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I. INTRODUCTION

Today there is no consensus on a theoretical model that
allows, within the framework of a single scenario, to describe
the phase diagram of cuprates, including the pseudogap phase,
strange metal phase, and the HTSC mechanism. Numerous
experimental data show the inapplicability of the BCS theory
and question the very existence of pairing ”bosonic glue” in
cuprates. The BCS paradigm involves using a single-particle
”k-momentum” representation. However, a more appropriate
description of strong local and nonlocal correlations, short
coherence length of ”Cooper pairs”, is achieved within the
framework of the ”coordinate”, or local, representation. At
the present time, realization of the ”beyond quasiparticle”,
or ”unparticle” description of cuprates is becoming more and
more popular. The pseudo-spin formalism is one of the most
promising ”unparticle” approaches. This allows one to use
many results that are well known for spin-magnetic systems,
including a description of phase transitions, topological struc-
tures, domains, and domain walls. Hereafter we consider a
simplified minimal microscopic (”toy”) model of the CuO4

centers in cuprates which allows us to derive all the local
order parameters within an unified approach and show that all
the main features of superconductivity, spin and charge orders
can be explained on equal footing.

II. RESULTS AND DISCUSSION

The ”on-site”, or the Hilbert space of the CuO4 plaquettes,
to be a main element of crystal and electron structure of
the high-Tc cuprates, is reduced to states formed by only
three effective valence centers [CuO4]7−,6−,5− (nominally
Cu1+,2+,3+, respectively), forming a charge triplet. Such an
approach for cuprates immediately implies introduction of
unconventional on-site quantum superpositions with different

charge, spin and orbital momenta. or with an uncertainty of
the charge, spin, and orbital density. To describe the diagonal
and off-diagonal, or quantum local charge order we start with
a simplified charge triplet model that implies a full neglect
of spin and orbital degrees of freedom [1]. Three charge
states, the bare Cu2+-center, the hole Cu3+-center, and the
electron Cu1+-center are assigned to three components of
the S = 1 pseudo-spin triplet with the pseudo-spin projections
MS = 0,+1,−1, respectively. The S = 1 spin algebra includes
the eight independent nontrivial pseudo-spin operators, the
three dipole and five quadrupole ones:

Ŝz; Ŝ± = ∓ 1√
2
(Ŝx ± iŜy); Ŝ

2
z ; T̂± = {Ŝz, Ŝ±}; Ŝ2

± . (1)

Both Ŝ+(Ŝ−) and T̂+(T̂−) can be anyhow related with con-
ventional single particle creation (annihilation) operators, how-
ever, these are not standard fermionic ones.

The pseudo-spin raising/lowering operators Ŝ2
+/Ŝ2

− do
change the pseudo-spin projection by ±2 and create an on-
site hole/electron pair, or composite boson, with a kinematic
constraint (Ŝ2

±)
2 = 0, that underlines its ”hard-core” nature. In

lieu of Ŝ± and T̂± operators one may use two novel operators:

P̂± =
1

2
(Ŝ± + T̂±); N̂± =

1

2
(Ŝ± − T̂±) , (2)

which do realize transformations Cu2+↔Cu3+ and
Cu1+↔Cu2+, respectively. Taking into account the s= 1/2
spin state of the Cu2+-center we should introduce the spin-
charge operators P̂ ν

± and N̂ν
± which do transform both the

charge and spin state. The on-site, or local S = 1 pseudo-spin
state can be written as follows

|Ψ⟩ = cos θ cosϕe−iα|−1⟩+sin θeiβ |0⟩+cos θ sinϕeiα|+1⟩.
(3)

The on-site off-diagonal order parameter with a d-wave sym-
metry

⟨Ŝ2
±⟩ =

1

2
(⟨Ŝ2

x−Ŝ2
y⟩±i⟨{Ŝx, Ŝy}⟩) =

1

2
cos2 θ sin 2ϕ e±2iα ,

(4)
which is nonzero only for the on-site spinless Cu1+-Cu3+

superpositions can be addressed to be a local complex su-



perconducting order parameter. Unconventional nonzero local
mean values of the Fermi-like operators P̂ ν

± and N̂ν
±

⟨P̂ ν
±⟩ ∝ ∓1

2
sin 2θ sinϕ e∓i(α−β); (5)

⟨N̂ν
±⟩ ∝ ∓1

2
sin 2θ cosϕ e∓i(α+β) (6)

imply the local charge and spin density uncertainty.
Effective S = 1 pseudo-spin Hamiltonian which does com-

mute with the z-component of the total pseudo-spin
∑

i Siz

thus conserving the total charge of the system can be written to
be a sum of potential and kinetic energies: Ĥ = Ĥpot+ Ĥkin,
where

Ĥpot =
∑
i

(∆iŜ
2
iz − µŜiz) +

∑
i<j

VijŜizŜjz , (7)

with a charge density constraint:
∑

i⟨Ŝiz⟩ = 2N ∆n, where
∆n is the deviation from a half-filling. The first single-site
term in Ĥpot describes the on-site density-density interactions,
or local correlations, ∆=U /2, U being the local correlation
parameter. The second term may be related to a pseudo-
magnetic field ∥Z with µ being the hole chemical potential.
The third term in Ĥpot describes the nonlocal correlations.
Kinetic energy Ĥkin = Ĥ

(1)
kin + Ĥ

(2)
kin

Ĥ
(1)
kin = −

∑
i<j

∑
ν

[tpijP̂
ν
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i+N̂

ν
j− + (8)
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ν
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ν
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Ĥ
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kin = −

∑
i<j

tbij(Ŝ
2
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2
j− + Ŝ2

i−Ŝ
2
j+) , (9)

is a sum of one- and two-particle transfer contributions. It
is worth noting, the single-particle transport is determined by
the three terms with different transfer integrals. The complete
Hamiltonian must include the antiferromagnetic Heisenberg
exchange coupling for the s= 1/2 Cu2+-centers

Hexc =
1

4

∑
i<j

Jijσiσj , (10)

where σ = 2P̂0s, P̂0 = 1 − Ŝ2
z are the on-site spin density

operators. Using the mean-field approximation (MFA) which
is the typical one for spin-magnetic systems we get several
MFA phases according to the number of independent local
order parameters. Within the two-sublattice (AB) approxi-
mation with nn (nearest neighbors) inter-site coupling we
arrive at a checkerboard charge order (CO, or CDW with
q= (π, π)) with ”pseudo-antiferromagnetic” order parameter
Lz = ⟨SzA⟩ − ⟨SzB⟩, spin-antiferromagnetic insulating phase
(AFMI) with local spin order parameter ⟨σ⟩, Bose super-
fluid/superconducting phase (BS) with local order parameter
⟨S2

±⟩, and the two Fermi-type metallic phases, the hole- and
electron-like ones, characterized by a superposition of nonzero
local order parameters ⟨P ν

±⟩ and ⟨Nν
±⟩, respectively. Interest-

ingly, this approximation does provide analytical expressions
for the phase transition lines [2]. It should be noted that the
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Fig. 1. (Color online) The MFA T - p (p the hole doping) phase diagram
for the model cuprate calculated with parameters quite arbitrarily chosen as
∆= 0.25, V = 0.375, tp = 0.67, tn = 0, tpn = 0, tb = 0.67 (all in units of the
exchange integral J) to obtain a visual agreement with experimental phase
diagram typical for cuprates.

local mean values of fermionic operators similar ⟨P̂ ν
±⟩ and

⟨N̂ν
±⟩ have been introduced by Caron and Pratt [3] to describe

the Hubbard model in the real coordinate space. The P -and N -
modes interact/mix due to the PN (NP ) contribution in H

(1)
kin,

which leads to ”strange” properties of the Fermi-type metal
phases with a specific coexistence of hole and electron carriers,
characteristic of both hole and electron doped systems.

Fig. 1 shows the MFA, even under extremely simplifying
assumptions, can reproduce quite well all the principal features
of the real phase diagram.

All the MFA phases are characterized by nonzero local
order parameters, i.e. they have a ”Néel” character, However,
the MFA ”hides” the existence of a true quantum ground
state, a ”quantum background”, such as the Anderson’s RVB
(resonating valence bond) phase, formed by a system of
electron-hole dimers [1]. It is with the formation of this
phase that puzzling ”pseudogap” behavior can be associated.
Obviously, the existence of this ”MFA-hidden” quantum state
leads to a significant suppression of the magnitude of the local
order parameters for CDW and superconducting (BS) phases
observed experimentally.
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