
Monte Carlo simulations of a model cuprate

1st Yury Panov

Inst. of Nat. Sci. and Math.

Ural Federal University

Ekaterinburg, Russia

yuri.panov@urfu.ru

2nd Alexander Moskvin

Inst. of Nat. Sci. and Math.

Ural Federal University

Ekaterinburg, Russia

alexander.moskvin@urfu.ru

3rd Vasilii Ulitko

Inst. of Nat. Sci. and Math.

Ural Federal University

Ekaterinburg, Russia

vasiliy.ulitko@urfu.ru

Abstract—We used the classical Monte Carlo method to

construct phase diagrams of a model cuprate within the

framework of a S = 1 pseudo-spin formalism
Keywords—HTSC cuprates, charge triplet model, pseudo-spin

formalism, classical Monte Carlo simulations

I. INTRODUCTION

One of the topical problems of the high-Tc cuprate physics

is the coexistence and competition of antiferromagnetic, su-

perconducting, and charge orderings [1], the study of which is

complicated by the presence of heterogeneity due to dopants or

non-isovalent substitution, as well as to the internal electronic

tendency to heterogeneity [2]. The use of the pseudo-spin

formalism and Monte Carlo (MC) method is very fruitful for

constructing phase diagrams and studying the features of the

thermodynamic properties for such systems.

II. MODEL

A minimal model to describe the charge degree of freedom

in cuprates [3], [4] implies that for the CuO4 centers in

CuO2 plane the on-site Hilbert space reduced to a charge

triplet formed by the three many-electron valence states

[CuO]
7−,6−,5−
4 (nominally Cu1+,2+,3+). These states can be

considered to be the components of the S = 1 pseudo-spin

triplet with projections MS = −1, 0, +1. Effective pseudo-

spin Hamiltonian of the model cuprate with the addition of

the Heisenberg spin-spin exchange coupling of the s = 1/2
[CuO]6−4 (Cu2+) centers can be written as follows:

H = Hch +Hexc +H(1)
tr +H(2)

tr − µ
∑

i

Szi . (1)

Here, the first term

Hch = ∆
∑

i

S2
zi + V

∑

〈ij〉

SziSzj (2)

describes the on-site and inter-site nearest-neighbour density-

density correlations, respectively, so that ∆ = U/2, U being

the correlation parameter, and V > 0. The sums run over the

sites of a 2D square lattice, 〈ij〉 means the nearest neighbors.

The second term

Hex = Js2
∑

〈ij〉

σiσj (3)

is the antiferromagnetic (J > 0) Heisenberg exchange cou-

pling for the CuO6−
4 centers, where σ = P0s/s operators take

into account the on-site spin density P0 = 1 − S2
z , and s is

the spin s = 1/2 operator. The third term

H(1)
tr = −tp

∑

〈ij〉

(

P+
i Pj + P+

j Pi

)

− tn
∑

〈ij〉

(

N+
i Nj +N+

j Ni

)

− tpn
2

∑

〈ij〉

(

P+
i Nj + P+

j Ni +N+
i Pj +N+

j Pi

)

(4)

where the transfer integrals tp, tn, tpn describe the three types

of the correlated ”one-particle” transport. P and N operators

are the combinations of the pseudospin S=1 operators [3]:

P+ ∝ (S+ + T+), N
+ ∝ (S+ − T+), T+ = SzS+ + S+Sz .

The next term

H(2)
tr = −tb

∑

〈ij〉

(

S2
+iS

2
−j + S2

+jS
2
−i

)

(5)

where the transfer integral tb describes the two-particle (”com-

posite boson”) transport [3]. The last term with chemical po-

tential µ is needed to account for the charge density constraint,

nN = 〈∑i Szi〉 = const.

III. STATE SELECTION ALGORITHM

We write the on-site wave function of the charge triplet in

the form as follows

|Ψ〉 = c+1 |+1〉+ c0 |0〉+ c−1 |−1〉 , (6)

c±1=sin
θ

2
cos

φ

2
e∓iα

2 , c0=cos
θ

2
ei

β

2 , (7)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ π, 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π. This

state corresponds to a point in the octant of the unit sphere. We

use the Metropolis algorithm for a system with conservation

of the total charge. The charge at the site, ni, is related to the

parameters of the wave function by the expression

2ni = (1− cos θi) cosφi. (8)

We require when the states of sites 1 and 2 change simulta-

neously, the total charge of the pair is preserved, n1 + n2 =
n′
1+n′

2 = 2n, and the points representing states uniformly fill

the allowed area in the octant.



Fig. 1. (Color online) The dependencies on the charge doping of the structure
factors in the ground state calculated with parameters ∆= 0.8, V = 0.625,
J = 1, tp = 0.35, tn = 0, tpn = -0.24, (all in units of the tb).

The state selection algorithm consists of the following steps:

1) caclulation of n1, −1 + n + |n| ≤ n1 ≤ 1 + n − |n|,
from equation

G1(n1;n) = γ, (9)

where γ is a random uniformly distributed quantity, 0 ≤
γ ≤ 1,

G1(n1;n) =
Φ(n1)−Θ(n) Φ(−1 + 2|n|)

Φ(1− 2|n|) , (10)

Φ(x) = sgnx

[

2
√

1 + |x|
π

(

2Π
(

−1, π
2

∣

∣m(x)
)

1 + |x|

−m(x)K (m(x))

)

− 1

2

]

+
1

2
, (11)

m(x) = 1−|x|
1+|x| , Θ(x) is the Heaviside step function,

Π
(

−1, π
2

∣

∣m
)

= Π1(1,
√
m) is the complete elliptic

integral of the third kind, K(m) is the complete elliptic

integral of the first kind;

2) calculation of the value n2 = 2n− n1;

3) calculation of cos θi
2 from equation

cos
θi
2

=
√

1− |ni| sn (γiK (m(ni)) ,m(ni)) , (12)

where γi, i = 1, 2, are the random uniformly distributed

quantities, 0 ≤ γi ≤ 1, sn (x,m) is the Jacobi function.

If ni = 0, we take cos θi
2 = γi.

4) calculation of cosφi from equation

cosφi =
ni

1− cos2 θi
2

. (13)

If ni = 0 and cos θi
2 = 1, φi is a random uniformly

distributed quantity, 0 ≤ φi ≤ π.

Fig. 2. (Color online) The MC T -x (x the charge doping) phase diagram
for the model cuprate calculated with the same parameters as in Fig. 1.

IV. RESULTS

In MC simulation, we calculated the structure factors

Fq(A,B) =
1

N2

∑

lm

eiq (rl−rm) 〈AlBm〉 , (14)

where Al and Bm are the on-site operators and the summation

is performed over all sites of the square lattice. To determine

the type of ordering, we monitored the following struc-

ture factors: F(π,π)(σ,σ) for antiferromagnetic (AFM) order,

F(π,π)(Sz, Sz) for the charge order (CO), F(0,0)(S
2
+, S

2
−) for

the superconducting order (SC), F(0,0)(P
+, P ) for the “metal”

phase (M ).

To illustrate the results of the MC simulation in Fig. 1 we

presented the doping dependence of the main structure factors

for the ground state of the model cuprate. Fig. 2 shows the

MC simulation of the T -x phase diagram for model cuprate

with the Hamiltonian (1) can reproduce some most important

features of the real phase diagrams typical for the hole

doped cuprates [1]. The critical temperatures for the AFM,

CO, and SC phases were determined from the jump in the

structure factor from zero to a certain finite value. Despite the

preliminary nature of the results, the obtained phase diagrams

show promising possibilities to describe the coexistence and

competition of various phase orders in cuprates.
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