
     

Fig. 1. Examples of χ(T) for selected High-Temperature Superconductors with different superconducting properties. 
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Abstract— This work gives an insight if clustering 

technique applied to the dataset consisting of about 1000 

measurements of High-Temperature Superconductors (HTS) 

using the AC susceptibility method, will allow recovering 

known and unknown relationships between different types of 

HTS and their superconducting properties, which depend on 

the type of superconductor and its preparation procedure. The 

dataset was simplified by using a Convolutional Autoencoder 

and the Bag of Words (BOW) representation. K-means and 

DBSCAN (Density-based spatial clustering of applications with 

noise) algorithms were used for clustering. The obtained 

results were visualised by the t-SNE algorithm (t-Distributed 
Stochastic Neighbor Embedding). 
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I. INTRODUCTION 

High-temperature superconductors (HTS) are materials 
which exhibit properties like zero electrical resistance and 
expulsion of an external magnetic field from the interior of a 
superconductor [1]. These unique properties are used in the 
state of the art applications for the medicine (MRI/NMR 
machines), science  (particle accelerators), transportation 
(Maglev) and electrical industry (electric power 
transmission, fault current limiters). The greatest drawback 
of superconductors is that they only function in low 
temperatures up to 134 K for HgBa2Ca2Cu3O9 at ambient 
pressure [2]. Scientists are still pursuing the discovery of 
room-temperature superconductor. The phenomenon of high-
temperature superconductivity is still not fully understood. 

Machine learning (ML) is the study of computer 
algorithms that improve automatically through experience 
[3]. Machine learning algorithms build a mathematical model 
based on data, order to make predictions or decisions without 
being explicitly programmed to do so [4]. Unsupervised 
learning (UL) is a subfield of ML. UL algorithms look for 
previously undetected patterns in a dataset with no pre-
existing labels and with a minimum of human supervision 

[5]. The great progress has been made in a quest to discover, 
develop or refine various machine learning algorithms in 
recent years. Also, new ways of data analysis (Artificial 
Neural Network autoencoders [6], t-SNE [7]) have been 
shown. ML application to the analysis of datasets is a state of 
the art technique and allows to gain new knowledge in 
various areas of science and engineering. 

Our work aims to provide first insights if clustering 
technique applied to the dataset consisting of about 1000  
measurements of HTS using the AC susceptibility method, 
will allow recovering known relationships (features) between 
different types of HTS and their superconducting properties, 
which depend on sample preparation conditions like 
sintering and annealing temperatures, etc. 

II. THEORY AND EXPERIMENTAL DETAILS 

The AC magnetic susceptibility can be written as a 
complex number by the formula χ=χ’+iχ”, where χ' is the 
dispersion and χ” is the absorption part of the AC 
susceptibility. The value of the dispersion part corresponds to 
the diamagnetic nature - a negative magnetization of the HTS 
sample when an external magnetic field is applied [8]. The 
values of χ' and χ” for HTS change with temperature. Above 
a certain temperature, called the critical temperature Tc, both 
parts of AC susceptibility are equal to zero. On the other 
hand, below critical temperature Tc, the χ' part has negative 
values and the χ” part is positive or equal to zero. The shapes 
of χ'(T) and χ”(T) curves strongly depend on superconductor 
properties, so measuring the temperature dependence of the 
complex AC susceptibility χ is the most common procedure 
for characterizing the properties of a superconductor. On Fig. 
1 are shown four selected examples of χ(T) for different 
types of High-Temperature Superconductors.  

III. MAIN METHODOLOGICAL ASSUMPTIONS 

(1) A single AC susceptibility measurement χ(T) can be 
treated as a sequence of several hundred data points 
(sentence), therefore it can be represented as a collection of 
smaller subsequences (words) (Fig. 2). Data point is a 3D 
vector consisting of values of sample temperature, χ’ and χ” 



 Fig. 2. An idea of Bag Of Words approach in the analysis of χ'(T) 

measurement. Small figures marked as A, B, C, D and E represent the 
words with unique features of a sequence shown on middle plot. 

 

Fig 4. Visualisation of about 1000 measurements of  χ’(T) in 3D 

feature space by t-SNE. Single measurement is 5D vector and is 

represented as single circle.  

      

    

Fig 3. Upper row shows χ’(T) measurements for thin layer HTS (left) 

and grinded and pressed polycrystalline HTS powder (right). Bottom 

row shows representations of these measurements in 5D space. 

parts of AC susceptibility χ. Subsequences are created by a 
sliding window method. (2) The χ'(T) measurement 
(sentence) can be represented as a collection of only a few 
unique subsentences (words). (3) The shape of χ(T) 
measurement depends on the physical properties (features) of 
a HTS sample. For any χ(T) measurement word occurrences 
histogram can be created by using Bag Of Words (BOW) 
model (Fig. 3). Histogram preserves the most important 
features of χ'(T) curve. (4) The real part of AC susceptibility 
χ’(T) curve is sufficient for successful recovery known 
relationships in χ(T) dataset. (5) All data points are equally 
spaced in temperature. (6) Variation in data points spacing 
among different measurements does not influence the 
features represented in histograms. 

IV. THE MOST IMPORTANT DETAILS ON COMPUTATION 

All χ’(T) measurements were normalised to [-1,0] range 
and then were divided into subsequences of the size of about 
several dozen data points. Values of temperatures were 
dropped. A data point is a single value of χ’. Resulting 
subsequences were normalised to [0,1] range. Next, further 
reduction of dimensionality of subsequences to 9 dimensions 
(9D) was performed by using an 1D convolutional 
autoencoder, which task was to learn the most efficient 
representation for a given subsequence. Then, all 
subsequences with reduced dimensionality were analysed by 
K-means and DBSCAN clustering algorithms to find 
subsequences (words) with unique features (Fig. 2) and 
create word dictionary. The results of clustering were 
evaluated by visualisation of the words dataset on 2D plane 
using the t-SNE algorithm. The most reasonable results were 
achieved by the k-Means with a number of classes set to 5. In 
the final step, the autoencoder and word dictionary were used 
to transform every single measurement in χ’(T) dataset into 
5D vector. The vector coordinates correspond to word 
occurrence in single χ’(T)  measurement. 

V. RESULTS AND DISCUSSION 

 It is possible to represent the most significant features of 
a single χ’(T) measurement of HTS sample as 5 numerical 
values by using Convolutional 1D Autoencoder and Bag Of 
Words model. The 5D representation of χ’(T) dataset 
preserves the most important features of measured HTS, 
because the most distant 5D representations of χ’(T) are for 
samples, which have the most different superconducting 
properties i.e. thin layer HTS (very high value of critical 
current density) and grinded and pressed polycrystalline HTS 
(current is equal to zero) (Fig.3). However the cluster 
analysis of 5D χ’(T) dataset by K-Means and DBSCAN did 
not reveal the existence of clearly distinct classes of χ’(T) 
measurements. Though a t-SNE visualisation (Fig. 4) shows 
that some clustering exists and some of the measurements 

are mainly arranged on some sort of cluster boundary. In our 
opinion, these results are interesting and more advanced 
analysis should be tried in future. 
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