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Abstract—In this work, we present and analyze the
numerical stability of two coupled finite element formu-
lations. The first one is the h-a-formulation and is well
suited for modelling systems with superconductors and
ferromagnetic materials. The second one, the so-called ¢-a-
formulation, applies for systems with thin superconducting
domains. These formulations involve two coupled unknown
fields and are mixed on the coupling interfaces. Function
spaces in mixed formulations must satisfy compatibility
conditions to ensure reliability and stability of the nu-
merical solutions. We propose stable choices of function
spaces using hierarchical basis functions and demonstrate

the effectiveness of the approach on simple 2D examples.
Keywords—Finite element analysis, high-temperature supercon-
ductors, mixed formulations, stability analysis.

I. INTRODUCTION

In this work, we consider two coupled finite element for-
mulations for modelling systems with high-temperature super-
conductors (HTS): the h-a-formulation for systems containing
superconductors and ferromagnets [1]] and the ¢-a-formulation
for systems with thin superconducting tapes [2].

In these coupled formulations, different finite element fields
are introduced region-wise, while they coexist and are coupled
through a common boundary or a common region. The field
coupling makes these formulations mixed, for which care must
be taken in the choice of function spaces and the discretization.
Naive choices of approximation function spaces can easily
lead to stability issues manifesting themselves as spurious
oscillations in the numerical solution [3]].

Following the general theory of mixed finite elements, we
analyze the related conditions for obtaining numerically stable
mixed formulations. In particular, we perform the inf-sup
numerical test for checking the compatibility of discretized
function spaces. We restrict the analysis to 2D problems.

II. FINITE ELEMENT FORMULATIONS

We model the magnetic response of HTS with the magneto-
dynamic equations, divb = 0, curlh = j, curle = —0;b. In
HTS, b = uoh and we assume a power law for the resistivity
p. The system can also contain ferromagnetic materials, that
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are assumed non-conducting, and for which the permeability
is a function of h.

The numerical domain €2 is decomposed into a conducting
domain ), and its complementary domain Q$. The notation
(A, B), denotes the integral of the AB product on €.

A. Coupled formulation - h-a-formulation

Systems containing both HTS and nonlinear ferromagnetic
materials are advantageously solved with a coupled h-a-
formulation [1]. In this formulation, we decompose the domain
Q into two parts: €, containing the superconducting domain,
to be solved with the h-formulation, and §2,, containing the
nonlinear ferromagnetic domain, to be solved with the a-
formulation. The common boundary of 2, and €2, is denoted
as 'y, The coupled h-a-formulation writes:

From an initial solution, find h € Hpy ;(Q) and a €
Aa(Q) s.t., for t > 0, VA’ € Ho 0(Q4), and Va' € Ag(Qa),

(0e(uh), ') + (peurlh, curlh’),

¢
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(h xng,,a’ )y, — (u ' curla, curl ), =0,

with H 1 (2,) and A 4(Q,) appropriate function spaces. The
notation Z;(h) denotes the net current I; flowing in (a group)
of conductor(s) i (¢ € 1,..., N = (C) for a given function h,
V; is the associated voltage.

The choice of function spaces for the discretization will
affect the stability of the method. In particular, functions with
a non-zero trace on I',, should be chosen with care. Different
possibilities are discussed in section

B. Thin conducting domains - t-a-formulation

The second formulation we consider is the so-called t-a-
formulation for modelling thin superconducting tapes [2[. The
tape is modelled as a line in 2D (a surface in 3D), denoted
as I'y,, and the current density inside the tape is described via
a current vector potential whereas the external magnetic field,
in a domain €, is expressed as the curl of a magnetic vector
potential. The formulation writes:



From an initial solution, find a € A4 (9
s.t., for all time instant, and Va' € Ay(Q,

o) and t € T7(Ty,),
), V' € To(Tw),

(1 " curla,curla’)

(wdra,curlt’).

o — (weurlt,a’), =0,

+ (w peurlt, curl ')

== D ViL(t),

ieC

2)

with A 4(Q,) and 7;(T",,) appropriate function spaces, Z;(t) =
I;, the net current flowing in tape ¢ for the potential £, V; the
associated voltage, and w the tape width.

As with the coupled h-a-formulation, the choice of basis
functions for discretization will affect the stability of the
method. In particular, functions with a non-zero trace on I',,
should be chosen with care.

ITII. STABILITY ANALYSIS

Both formulations take the form of a perturbed saddle-point
problem. In addition to continuity and coerciveness conditions,
such a problem is numerically stable when an inf-sup condition
on the coupling operator is satisfied. For the h-a-formulation,
the inf-sup condition is satisfied if there exists a 5 independent
of mesh size such that

(@ xng, ,h)p
inf sup

—— > 3 >0,
a€HL Rty () fallas Rl =

3)
with H+ the orthogonal complement of the kernel H = {a €
.AA(QQ) : (a X ng, 7h)Fm =0,Yh € /HHJ(Q;,,)}. Ifg—0
for progressively refined meshes, stability issues might arise,
such as spurious oscillations in the numerical solution. In this
work, the inf-sup condition is evaluated at the discrete level
with the numerical inf-sup test [3].

For naive choices of function spaces Hpy ;(€2,) and
A4(Q4), we indeed observe such stability issues. An example
is illustrated in Fig. [Ta] for a two-bar problem. If h and a
only use ("first-order") Whitney elements, spurious oscillations
take place at the material interface. This is associated with an
inf-sup constant decreasing to zero as the mesh is refined, as
shown in Fig. 2]

One possibility to stabilize the problem is to enrich locally
the function space of one of the two fields, for the h-
a-formulation. This is illustrated in Fig. [Tb] where using
("second-order") hierarchical basis functions for h on I’
allows to get rid of non-physical oscillations. Stability is
indeed confirmed by the inf-sup test of Fig. 2]

Similar observations are made with the ¢-a-formulation:
spurious oscillations in the current density are observed when
using Whitney elements for a and ¢ [4]. In that case, enriching
the function space for a locally on I';, stabilizes the problem
and numerical inf-sup tests confirm these results.

IV. CONCLUSION

In this work, we analyze the numerical stability of two
mixed finite element formulations for systems with HTS: the
h-a-formulation and the ¢-a-formulation. In both cases, the
function spaces should be chosen carefully in order to avoid
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Fig. 1: Detail of a numerical solution. Magnetic flux density near
the material interface (arrows represent the average value in each
element) for a 2D two-bar problem (upper bar is a ferromagnet,
lower bar is an HTS, exterior is air). (a) Unstable choice of function
spaces, resulting in non-physical oscillations on I',. (b) Example of
a stabilized problem with hierarchical basis functions on I'y, for h.
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Fig. 2: Evolution of the inf-sup constant 8° with mesh refinement
(6 — 0) on the stacked bar linear problem. Four cases are considered.
Superscript -! refers to Whitney elements only and superscript ->
refers to enriched spaces. We can only conclude on stability when
exactly one space is enriched with respect to Whitney elements.

spurious oscillations in the numerical solution. We illustrated
the numerical issues and the stabilized solution for the h-a-
formulation. In the full paper, we will describe the analysis for
the t-a-formulation as well. We will also define the function
spaces in details.
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