

Homogenization in 3D based on the T-A formulation

Vargas-Llanos, Carlos Grilli, Francesco

www.kit.edu

T-A formulation for 3D homogenization

Faraday's law $\nabla \times (\rho_{HTS} \nabla \times T) = -\frac{\partial B}{\partial t}$

T-A Formulation

 $B = \nabla \times A$ $I = \nabla \times T$

 $\nabla \times \left(\frac{1}{\mu} \nabla \times A\right) = J$ (Comsol's magnetic field module)

HTS model

Ampere's law

How to enforce the current?

$$I = \iint_{S} Jds = \iint_{S} \nabla \times Tds = \oint_{\partial S} Tdl$$

 $I = (T_1 - T_2)\delta$

(Dirichlet Boundary Condition)

 $\delta:$ Thickness of the superconducting layer

*E. Berrospe-Juarez, V. M. R. Zermeno, F. Trillaud and F. Grilli, "*Real-time simulation of large-scale HTS systems: multi-scale and homogeneous models using the T-A formulation*", Superconductor Science Technology, Vol. 32, p. 065003, 2019.

A formulation

T formulation

T-A Homogenization

 $B = \nabla \times A \qquad J = \nabla \times T$

Faraday's law $\nabla \times (\rho_{HTS} \nabla \times T) = -\frac{\partial B}{\partial t}$

Ampere's law

 $\nabla \times \left(\frac{1}{\mu} \nabla \times A\right) = J$

(Comsol's magnetic field module)

HTS model

$$\rho_{HTS} = \frac{E_c}{J_c(\boldsymbol{B})} \left| \frac{\boldsymbol{J}}{J_c(\boldsymbol{B})} \right|^{n-1}$$

How to enforce the current?

$$\frac{\partial T_y}{\partial \boldsymbol{n}} = 0$$

(Neumann Boundary Condition)

 $I = (T_1 - T_2)\delta$ (Dirichlet Boundary Condition)

$$J_s = \frac{\delta}{\Lambda} J_z$$

 δ : Thickness of the superconducting layer Λ : Thickness of the unit cell

*E. Berrospe-Juarez, V. M. R. Zermeno, F. Trillaud and F. Grilli, "*Real-time simulation of large-scale HTS systems: multi-scale and homogeneous models using the T-A formulation*", Superconductor Science Technology, Vol. 32, p. 065003, 2019.

3D T-A Formulation

Faraday's law

HTS model

 $\rho_{HTS} = \frac{E_c}{J_c(\boldsymbol{B})} \left| \frac{\boldsymbol{J}}{J_c(\boldsymbol{B})} \right|^{n-1}$

Current vector potential

 $I = \nabla \times T$

$$\begin{bmatrix} J_x \\ J_y \\ J_z \end{bmatrix} = \begin{bmatrix} \frac{\partial (T \cdot n_z)}{\partial y} - \frac{\partial (T \cdot n_y)}{\partial z} \\ \frac{\partial (T \cdot n_x)}{\partial z} - \frac{\partial (T \cdot n_z)}{\partial x} \\ \frac{\partial (T \cdot n_y)}{\partial x} - \frac{\partial (T \cdot n_x)}{\partial y} \end{bmatrix}$$

And the current is enforced as:

$$I = \iint_{S} Jds = \iint_{S} \nabla \times \mathbf{T}ds = \oint_{\partial S} \mathbf{T}dl$$
$$I = (T_{1} - T_{2})\delta$$

 $T_1 \uparrow \underbrace{T = 0}_{T_1} \downarrow T_2$

*H. Zhang, M. Zhang, and W. Yuan, "An efficient 3D finite element method model based on the T-A formulation for superconducting coated conductors", Superconductor Science Technology, Vol. 30, p. 024005, 2017.

3D T-A Homogenization

Faraday's law

Current vector potential

 $J = \nabla \times T$

$$\begin{bmatrix} J_x \\ J_y \\ J_z \end{bmatrix} = \begin{bmatrix} \frac{\partial (T \cdot n_z)}{\partial y} - \frac{\partial (T \cdot n_y)}{\partial z} \\ \frac{\partial (T \cdot n_x)}{\partial z} - \frac{\partial (T \cdot n_z)}{\partial x} \\ \frac{\partial (T \cdot n_y)}{\partial x} - \frac{\partial (T \cdot n_x)}{\partial y} \end{bmatrix}$$

HTS model

$$\rho_{HTS} = \frac{E_c}{J_c(\boldsymbol{B})} \left| \frac{\boldsymbol{J}}{J_c(\boldsymbol{B})} \right|^{n-1}$$

How can we get \vec{n} inside a volume?

How can we enforce the current?

3D T-A Homogenization

How can we get \vec{n} inside a volume?

Circular section Straight section (centered in (0,0,0)) (centered in (0,0,0)) $n_{\chi} = \frac{X}{\sqrt{X^2 + Y^2}}$ $n_{\rm r} = 1$ $n_y = \frac{Y}{\sqrt{X^2 + Y^2}}$ $n_{\gamma} = 0$ $n_{z} = 0$ $n_{z} = 0$ y z x

How can we enforce the current?

Neumann Boundary Condition

 $\frac{\partial T_{comp}}{\partial n} = \frac{\partial (n_x \cdot T_x + n_y \cdot T_y)}{\partial n} = 0$

Dirichlet Boundary Condition

 $I=(T_1-T_2)\delta$

 $J_s = \frac{\delta}{\Lambda} J_z$ δ : Thickness of the superconducting layer Λ : Thickness of the unit cell

Circular coil

Brief description of the circular coil

Brief description of the circular coils

Internal radious	30 mm	n	25
External radious	33.9 mm	Ec	1e-4 V/m
Turns	24	Tape width	4 mm
Frequency	36 Hz	Ic tape 77	K 128 A

Outcomes

- Validation against measurements.
- Validation against a 2D Solution.
- Comparison of the normalized current penetration.

*E. Pardo, J. Šouc and L. Frolek, "*Electromagnetic modelling of superconductors with a smooth current–voltage relation: variational principle and coils from a few turns to large magnets*", Superconductor Science Technology, Vol. 28, p. 044003, 2015.

Circular coil models - Validation

AC transport losses One coil Three coils 10^{-2} 10^{-2} AC loss per cycle per unit length (J/m) 10 10^{-4} 80 10 20 30 40 50 60 70 10 30 40 50 60 70 90 100 1100 80 Four coils 10^{-2} Two coils 10^{-2} 10^{-4} 10^{-4} 70 25 30 35 0 10 20 30 40 50 60 80 90 10 15 20 40 45 50 55 Current amplitude (A) Current amplitude (A) Measurements ···· T-A 2D axisymmetric model T-A 3D homogenization model

*E. Pardo, J. Šouc and L. Frolek, "Electromagnetic modelling of superconductors with a smooth current-voltage relation: variational principle and coils from a few turns to large magnets", Superconductor Science Technology, Vol. 28, p. 044003,

- 55 A peak transport current simulation -Current = 0 A 0.5 -0.5 -1 T - AT - A**3D** Homogenization 2D Axisymmetric

Normalized current penetration

2015.

Institute of Technical Physics (ITEP)

Brief description of the racetrack coil

Internal radious (r1)	35 mm
External radious (r2)	55 mm
Straight part lenght (y_0)	75 mm
Turns	50
Frequency	50 Hz

HTS Tape characteristics

n	21	$J_{co} = 49GAm^{-2}$
Ec	1e-4 V/m	k = 0.275
Tape width	4 mm	$B_c = 32.5 \ mT$
Ic tape 77 K	160 A	b = 0.6

$$J_{\rm c}(B_{\parallel}, B_{\perp}) = \frac{J_{\rm c_0} f_{\rm HTS}}{\left[1 + \sqrt{(B_{\parallel}k)^2 + B_{\perp}^2} / B_{\rm c}\right]^b}$$

Racetrack coil – Transport current = 120 A – t=0.01425 Normalized current behaviour (J/Jc)

Karlsruhe Institute of Technology

AC transport losses as a function of normalized current density

- Degrees of freedom:
 - T-A 3D homogenization (178484).
 - H 3D homogenization (176138).
- Mesh:
 - T-A 3D homogenization: coarse.
 - H 3D homogenization: fine.
- The calculations were made with a 3.60 GHz Intel Core i7-4960X computer with 12 logical processors and 64GB of RAM.

- 2D integral constraint.
- Use of anisotropic resistivity.
- Manual discretization of the homogenized bulk.

3D Homogenization T-A formulation This restriction is included in the essence of the T-A homogenization by applying the thin strip approximation which constraints the current to flow in the plane parallel to the tape.

Computation time

Normalized current (I/Ic_tape)	Time H formulation	Time T-A formulation	Percentage reduction
0.25	17.38 h	3.19 h	81.64
0.5	29.74 h	5.66 h	80.98
0.625	35.16 h	6.76 h	80.77
0.75	41.18 h	8.06 h	80.43

Fair comparison between T-A and H homogenization 3D?

Degrees of freedom:

- T-A 3D homogenization (178484).
- H 3D homogenization (176138).
- Mesh:
 - T-A 3D homogenization: coarse.
 - **H** 3D homogenization: fine.
- The calculations were made with a 3.60 GHz Intel Core i7-4960X computer with 12 logical processors and 64GB of RAM.

Thanks!