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FFT-based method for superconductivity problems:
* Derived for thin film problems (Vestgarden et al. 2012, 2013):
the method of lines in time with FFT-based discretization in space.

 Improved and extended to 3D bulk problems (LP and Sokolovsky,
2018).

This talk:

* Extension to stacks of thin flat films of the same (arbitrary) shape;
* Dense stacks of many films: homogenization;

e Simple formulation for high (infinite) stacks.



Problem formulation : A stack of thin sc films
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Denoting G, (r) = (472\/ r’ +(ld)? ) we can write the Biot-Savart law as
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where * means convolution and g, are extended by zero to R*.
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Substituting F[G,, ,1=(2|k[)"exp(—d | k(m—1)|) into equation

F[h,, 1K) =k Z FIG,. 1(k)FLg,1(k)

we showed that for k = 0 this system can be inverted and one can set

G %M(k)F[H] _C()
where g =(g,,...9y) . H=(h,-h,...h,,-h})",
M (k) Is a three-diagonal matrix, (2/|k [)M should be replaced by zero for k =0,

and time-dependent constants C_ (t) are determined implicitly by the conditions
JQM gsa—6

with Q_ . =R*\Q



Differentiation with respect to time yields

g=F %M(k)F[H]

Let the functions g (t,r) be known at time t.
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Let the functions g (t,r) be known at time t.

By the Faraday law h,,, = -1,V xe,,, soinfilms h,, = 4'V-[p( Vg, VY, ]

and H, =h_, —h¢ is known in Q. However, for (1) we need H_ in all R,
It Is also necessary to ensure that all g, remain zero outside Q.
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Let the functions g (t,r) be known at time t.
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By the Faraday law h,,, = -1,V xe,,, soinfilms h,, = 4'V-[p( Vg, VY, ]

and H, =h_, —h¢ is known in Q. However, for (1) we need H_ in all R,

It Is also necessary to ensure that all g, remain zero outside Q.

Theproblemtobesolvedis :
find H in Q

out

such that (1) yieldsg=0inQ_,.

This problem canbe solved iteratively; its solution determines g inQ.

The evolutionary problem for g is therefore defined.



Numerical implementation (Matlab) :
o We use aregular N, x N, grid in a rectangular domain containing €2 and

several times larger; values of all variables are sought in the grid nodes.
e The continuous Fourier transform is replaced by the discrete one and

computed using the FFT algorithm.

o All spacial derivatives are computed In the Fourier space; Gaussian
smoothing is applied to supress high-frequency oscillations.

o A standard ODE solver is employed for integration in time.



Example.
In applications, superconducting film stacks often contain hundreds of

densely packed films.
Homogenized anisotropic bulk model [Clem et al (2007)] was used
by Kapolka et al (2018) and Olm et al (2019) to simulate magnetization

of a dense QAx Nd =10x10x1 mm?® stack of films, characterized by the
power relatione_~(j_/j.)*° (the benchmark problem).

The bulk model assumes e, ~ (J,/J,)* with J_ = j./d in the
parallel-to-films planes and an infinite resistivity in the normal direction.



High resistivity In z direction can slow down numerical simulations.
An alternative [LP and Sokolovsky, 2011] is to consider a stack of N, < N
films with the distance d, = Nd / N, and the sheet critical current density,
Joo =i dyds:

For stacks of long strips an accurate approximation of the bulk model
solution was observed if d, / a, <0.025, where a,, Is the strip width.

For the 10x10x1 mm® stack, a 4-film stack already satisfies this criterion.
We compared our results for losses, current densities, and computation times

with those In Kapolka et al (2018) and Olm et al (2019) for the same
sinusoidal external field, similar meshes inside the sc area, and similar PCs.



Two approaches to homogenization:
reduced stack and anisotropic bulk
(benchmark: a dense 10X10X1 mm?3 stack)

Stack of N films N=4 3.43 9 hours
(our results) N=6 3.51 23 hours
Kapolka et al., MEMEP 3.50 6 days*
3 methods H-formulation, COMSOL 3.45 1.7 days
VIEM 3.46 unknown
Olm et al. H-formulation 3.46 unknown

"1 day on a computer cluster.
Computed losses per cycle in all cases are 3.46 mJ £1.5% .
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Computed current density distributions at the peak of external field.
Top: Space-averaged solution for six-film stack (our result).
Bottom: Anisotropic bulk model solution (Kapolka et al, 2018).




High stacks
Previous 2D simulations showed that if the stack is high, the current densities
are almost the same in all films except those close to stack top or bottom.

For the infinite stacks of long strips the problem was solved analytically
by Mawatari (1996) for the Bean critical-state model.

For infinite stacks of arbitrary shaped films and any current-voltage
relation, the FFT-based numerical method turns out to be almost the
same as for a single film.



Infinite stacks. Since the currents are the same in all films,

g, =g forall -oo<m <
the formulation simplifies. Summing up the influence of all films
we obtained

g=F"|S(kDF[h-h]|-C, [ gdr=o0,
2[1-exp(—kd)

with S(k) = — ik
(k) K|1+exp(=kd)

This i1s very similar to the single film case, where S(k) = E SO numerical

solution is similar too (LP and Sokolovsky, 2018).
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Ford / R = 0.05 (top row) solution
is close to that for an infinite sc cylinder
in a parallel field.

Example: e~ (j/j.)”
Infinite stack of thin disks of radius R
in a growing external field.

For d / R =1 (bottom row) solution is
close to that for a single sc disk.



Remarks on the FFT - based method

e The FFT-based method was extended to stacks of flat films of an arbitrary
shape. We assumed a field-independent current-voltage relation but the
method Is not limited to such relations.

For an infinite stack numerical solution by the FFT-based method Is similar
to that for a single film.

Previously, efficiency of the FFT-based method was shown also for 3D bulk
problems (and used for modeling magnetic lenses and magnetic shielding).



Remarks on the FFT - based method
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shape. We assumed a field-independent current-voltage relation but the
method is not limited to such relations.

For an infinite stack numerical solution by the FFT-based method Is similar
to that for a single film.

Previously, efficiency of the FFT-based method was shown also for 3D bulk
problems (and used for modeling magnetic lenses and magnetic shielding).

e Replacing a dense stack by a stack of only a few films and rescaling
(partial homogenization + FFT method) can be more efficient than using the
anisotropic bulk model.



Thank you!
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