
3D stack magnetization problems: 
Solution by the FFT-based method

Leonid Prigozhin1 &         Vladimir Sokolovsky2

1Blaustein Institutes for Desert Research    and    2Physics Department

Ben-Gurion University of the Negev

7-th Int. Workshop on Modelling in HTS, Nancy,  June 22-23, 2021 



FFT-based method for superconductivity problems:
• Derived for thin film problems (Vestgården et al. 2012, 2013):

the method of lines in time with FFT-based discretization in space.
• Improved and extended to 3D bulk problems  (LP and Sokolovsky, 

2018).

This talk:
• Extension to stacks of thin flat films of the same (arbitrary) shape;
• Dense stacks of many films: homogenization;
• Simple formulation for high (infinite) stacks.
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The problem to be solved is :

This problem can be solved  iteratively; its solution determines    in Ω

therefore defined.



 We use a regular  grid in a rectangular domain containing  and 

   several times larger; values of all variables are sought in the grid nodes.

  The continuous

x yN N•  

•

Numerical implementation (Matlab) :

 Fourier transform is replaced by the discrete one and 

    computed using the FFT algorithm.

  All spacial derivatives are computed in the Fourier space; Gaussian 

    smoothing is applied to supress h

•

igh-frequency oscillations.

  A standard ODE solver is employed for integration in time.•



In applications, superconducting film stacks often contain hundreds of

densely packed films. 

   Homogenized anisotropic bulk model [Clem  (2007)] was used 

by K  anapolka  (2018) Ol md  

et al
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of a dense 10 10 1 mm  stack of films, characterized by the 

power relation ( / )   (the benchmark problem).  
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    High resistivity in  direction can slow down numerical simulations. 

An alternative is to consider a stack of  

films with the distance /  and the sheet c
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   For stacks of  long strips  an accurate approximation of the bulk model

solution was observed if ,  where  is the strip width. 
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losses, current densities, and computation times

 4-film stack already satisfies this criterion. 

We compared our results for  

with those  in  and for the same 
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oidal external field,  similar meshes inside the sc area, and similar PCs. 



Loss/cycle, 
Qm (mJ)

Computation 
time

Stack of N films
(our results)

N=4
N=6

3.43
3.51

9 hours
23 hours

Kapolka et al.,
3 methods

MEMEP
H-formulation, COMSOL

VIEM

3.50
3.45
3.46

6 days*
1.7 days

unknown

Olm et al. H-formulation 3.46 unknown

Two approaches to homogenization: 
reduced stack and anisotropic bulk

(benchmark: a dense 10X10X1 mm3 stack)

*1 day on a computer cluster.

Computed losses per cycle in all cases are 3.46 mJ 1.5% . 



Top: Space-averaged solution for six-film stack our ( ).

Bottom: Anisotropic bulk model solution (

result

Kapolka , 2018).et al

Computed current density distributions at the peak of external field. 



Previous 2D simulations showed that if the stack is high, the current densities 

are almost the same in all films except those close to stack top or bottom. 

For the infinite stacks of long s

High stacks

trips the problem was solved analytically 

by  for the Bean critical-state model. 

For infinite stacks of arbitrary shaped films and any current-voltage 

relation, the FFT-ba

Mawatari (

sed numeri

1996)

cal method turns out to be almost the 

same as for a single film.



Since the currents are the same in all films,

                                      for all - <

the formulation simplifies. Summing up the influence of all films 

we obtained
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    Infinite stack of thin disks of radius  

    in a growing external fie
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is close to that for an infinite sc cylinder

in a parallel field. 
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close to that for a single sc disk. 



Remarks on the FFT - based method 
The FFT-based method was extended to stacks of flat films of an arbitrary 

   shape. We assumed a field-independent current-voltage relation but the

   method is not limited to such relations. 
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•

or an infinite stack numerical solution by the FFT-based method is similar 

   to that for a single film.

      Previously, efficiency of the FFT-based method was shown also for 3D bulk 

   problems (and used for modeling magnetic lenses and magnetic shielding). 

 Replacing a dense stack by a stack of only a few films and rescaling 

  (partial homogenization + FFT method)  can be more efficient than u

•

sing the 

  anisotropic bulk model.



Thank you!

Prigozhin and Sokolovsky, SuST, 31 (2018) 125001


