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Introduction
Coupled formulations such as H-A or T-A often offer many
advantages for HTS modeling:
I improved efficiency for nonlinear system resolution,
I reduced number of DOFs,
I increased flexibility,
I easier geometry definition. . .

However, they enter the framework of mixed formulations, thus
requiring to be extremely careful regarding function spaces.

Otherwise, non-physical results must be expected:

HTS

Ferromagnet

1/19



Strong form
I Magnetodynamic (quasistatic) equations

div b = 0, curl h = j, curl e = −∂tb.

I Constitutive relationships

High-temperature superconductors (HTS):

e = ρ(‖ j‖) j and b = µ0 h,

with the power law ρ(‖ j‖) = ec
jc

(
‖ j‖
jc

)n−1
.

Ferromagnetic material (FM):

b = µ(b) h and j = 0.
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Dual formulations
Two classes of formulations with the finite element method:
I h-conform, e.g. h-formulation ,

I enforces the continuity of the tangential component of h,
I involves e = ρ j and b = µh,
I with curl h = 0 in non-conducting domain (”h-φ”+cuts),(
∂t(µh) ,h′

)
Ω

+
(
ρ curl h , curl h′

)
Ωc
−
〈
e× n ,h′

〉
Γe

= 0.

I b-conform, e.g. a-formulation ,
I enforces the continuity of the normal component of b,
I involves j = σe and h = νb, (σ = ρ−1, ν = µ−1)(
ν curl a , curl a′

)
Ω

+
(
σ ∂ta , a′

)
Ωc
−
〈
h× nΩ , a′

〉
Γh

= 0.

Nonlinear constitutive laws involved in opposite ways⇒ very
different numerical behaviors are expected. . . and observed.
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Best choice for HTS only
Cycles in iterations:

x

f(x)
b

In the a-formulation , the diverging slope
associated with j = σe for e→ 0 is really
difficult to handle.

⇒ Among the two simple formulations, the h-formulation is
much more efficient for systems with HTS:
I with an adaptive time-stepping algorithm,
I solved with a Newton-Raphson method.

Dular, J., et al. (2020) TAS 30 8200113.
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Ferromagnetic materials
The nonlinearity is in the magnetic constitutive law.
I h-formulation the involved law is b = µh.

µ σ≈

⇒ Often enters cycles with Newton-Raphson.
OK with fixed point, or N-R with relaxation factors but slow.

I a-formulation the involved law is h = νb.

ν ρ≈

⇒ Efficiently solved with Newton-Raphson.

The a-formulation is more appropriate for dealing with the
nonlinearity, whereas for HTS, the h-formulation is best.
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Coupled materials - h-a-formulation

Use the best formulation in each material

Decompose the domain Ω, for example
into:
I Ωh = {HTS, Air}
I Ωa = {Ferromagnet}

and couple via Γm = ∂(FM):

HTS
FM

Air

(
∂t(µh) ,h′

)
Ωh +

(
ρ curl h , curl h′

)
Ωh

c
+
〈
∂ta× nΩh ,h′

〉
Γm

= 0,〈
h× nΩa , a′

〉
Γm
−
(
ν curl a , curl a′

)
Ωa = 0.

Dular, J., et al. (2020) TAS 30 8200113.
See also: Brambila R. et al, (2018) TAS 28, 5207511.
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HTS tapes - t-a-formulation
To model thin superconducting tapes, two main possibilities:

1. Use the true geometry and the h-formulation with
one-element across the thickness (quad., prism, hexa.).

2. Perform a thin shell approximation and model the tape as a
line⇒ t-a-formulation .

H. Zhang, et al. (2016) SUST 30, no. 2, p. 024005.
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HTS tapes - t-a-formulation

Consider an HTS tape Γw of thickness w.

The current density is described by a
current potential t:
I such that j = curl t,
I gauged by being defined along

the normal of the tape, t = t n,
I with BC related to the total

current I (t+ − t− = I/w).

Γw

Ωa

I

V

n

t− = 0

t+ = I/w

(
ν curl a , curl a′

)
Ωa
−
〈
w curl t , a′

〉
Γw

= 0,〈
w ∂ta , curl t′

〉
Γw

+
〈
w ρ curl t , curl t′

〉
Γw

= 0,
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Perturbed saddle point problems
h-a-formulation(
∂t(µh) , h′)

Ωh +
(
ρ curl h , curl h′)

Ωh
c
+

〈
∂ta× nΩh , h′〉

Γm
= 0, ∀h′ ∈ H,〈

h× nΩa , a′〉
Γm
−

(
ν curl a , curl a′)

Ωa = 0, ∀a′ ∈ A.

t-a-formulation〈
w ρ curl t , curl t′

〉
Γw

+
〈
w ∂ta , curl t′

〉
Γw

= 0, ∀t′ ∈ T ,〈
w curl t , a′〉

Γw
−

(
ν curl a , curl a′)

Ωa
= 0, ∀a′ ∈ A.

These are mixed formulations, perturbed saddle point problems:{
a(u, v) + b(v, p) = 〈f , v〉, ∀v ∈ V,

b(u, q)− c(p, q) = 〈g, q〉, ∀q ∈ Q,
or

(
A BT

B −C

)(
u
p

)
=

(
f
g

)
.

⇒ Compatibility conditions to ensure numerical stability.

D. Boffi, F. Brezzi, et al., Mixed FE methods and applications, Springer, 2013.
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Numerical oscillations
If function spaces do not satisfy the compatibility conditions. . .

h-a-formulation First-order functions for h and a:

HTS

Ferromagnet

t-a-formulation First-order functions for t and a:
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Compatibility conditions

(
A BT

B −C

)(
u
p

)
=

(
f
g

)
.

The solution is stable, i.e., ‖u‖V + ‖p‖Q ≤ C(‖f‖V′ + ‖g‖Q′),
if ∃α, β, γ > 0 (strictly) such that

vTAv ≥ α‖v‖2, ∀v ∈ ker(B),

qTCq ≥ γ‖q‖2, ∀q ∈ ker(BT),

inf
q∈(ker(BT))⊥

sup
v∈V

qTBv
‖q‖Q‖v‖V

≥ β > 0 (inf-sup condition).

In our case, the inf-sup condition is the most restrictive.

D. Boffi, F. Brezzi, et al., Mixed FE methods and applications, Springer, 2013.
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Inf-sup test
The inf-sup condition is not easy to check analytically.
⇒We perform a numerical inf-sup test.
On progressively refined meshes, for given function spaces:

1. Define suitable norms.
2. Extract matrices B, NV , and NQ, from the FE assembly, with

‖v‖2
V = vTNVv,

‖q‖2
Q = qTNQq.

3. Solve the eigenvalue problem(
BN−1

V BT
)

q = λNQq.

How does the lowest non-zero eigenvalue behave when the
mesh is refined?
I It tends to zero⇒ unstable,
I It is bounded from below⇒ stable.

D. Chapelle, K.-J. Bathe, The inf-sup test, C&S 47, 1993.
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h-a-formulation Unstable choices

Linear or quadratic elements for both h and a⇒ Unstable.
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h-a-formulation Stable choices
One way to stabilize the problem:
⇒ Increase the discretization order of one field (h or a).
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Increasing the order on the coupling interface only is sufficient.

ψn ψn2
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h-a-formulation Stabilization

I First-order functions for h and a (inf-sup KO):

HTS

Ferromagnet

I Second-order for a, first-order for h (inf-sup OK):

HTS

Ferromagnet
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t-a-formulation - Inf-sup test
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Similar conclusions: increase the order of one function space.
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t-a-formulation - Stabilization

Example for a 2D case, current density along the tape:
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NB: With the choice T quadr and Alinear, Newton-Raphson faces
convergence difficulties.
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Conclusion and application
Two coupled formulations
I Modeling HTS and FM efficiently⇒ h-a-formulation

I Modeling HTS tapes can be done with a t-a-formulation

Both formulations are mixed⇒ Inf-sup condition.

By enriching one of the two spaces, stability is guaranteed.

Extension to 3D: Bulk magnetization with h-a-formulation (h-φ)
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