Mechanical behavior of HTS coils in high field magnets

Huadong Yong¹ , Mengdie Niu¹ , Jing Xia² , Youhe Zhou¹

¹Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, China 2 Institute of Applied Physics and Computational Mathematics, Beijing, PR China

Contents

- **• Background**
- **• Mechanical behaviors during quench**
- **• Mechanical behaviors in REBCO coil**
- **• Future work**

⚫ **INS / NI REBCO magnets**

- **The HTS coil is usually inserted in high field magnet**
- **The local critical current degradation is found in HTS coil under high Lorentz force**

van der Laan et al 2007 APL 90: 052506

Kajita et al 2016 IEEE Supercond 26: 4301106

Xia et al 2019 SUST 32: 095005

The mechanical stress or strain can affect the superconducting properties remarkably

- **Degradation of critical current density with the strain**
- **Cracking or delamination is observed in the superconducting tape**
- **The discrete contact model should be used in the coil**

The superconducting coil is subjected to the complicated stress or strain.

Firstly, the winding stress can be generated as the tape is

The key points of numerical simulation of mechanical response

Highly nonlinear:

- ◆ E-J power law relationship
- ◆ Nonlinear plastic deformation
- Parameter are dependent on the temperature, such as thermal conductivity and heat capacity

Multi-field coupling:

- The electric field and current can cause energy loss
- The critical current density is related to the temperature and magnetic field
- The superconductor is subjected to Lorentz force

Multiscale modelling:

 \blacklozenge The superconducting layer (μ m) \longrightarrow magnet (m)

Case 1: Mechanical behaviors during quench

- m 1909 U UNI

Simplified 2D-axisymmetric numerical model

H-formulation

Heat diffusion equation

$$
\nu C_p \frac{\partial T}{\partial t} = \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r k \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) \right] + Q_s + Q_c,
$$

Mechanical equilibrium equations

$$
\begin{cases}\n\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{zr}}{\partial z} + \frac{\sigma_r - \sigma_\varphi}{r} + f_r = 0 \\
\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{rz}}{\partial r} + \frac{\tau_{rz}}{r} + f_z = 0\n\end{cases}
$$

Niu et al, 2020, Appl. Math. Mech. -Engl. Ed. 42: 235-250 7

Mechanical behaviors during quench

The hot-spot temperature and current distributions

- As the heating energy is larger than the MQE, the maximum temperature will increase quickly.
- The current will redistribute during the quench.

The radial and hoop stress distributions

- The radial stress is much smaller than the hoop stress during quench.
- The stress or strain is remarkable at hot-spot region.

Case 2: Mechanical behaviors in REBCO coil

- m 1909 v_{UV}
- ⚫ **To reveal the stress-strain states of high-field REBCO magnets after excitation, we design the subsequetional FE models to include the winding and thermal stresses.**

• **Equilibrium equations**

$$
\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{zr}}{\partial z} + \frac{\sigma_r - \sigma_\varphi}{r} + f_r = 0 \qquad \text{if } \sigma_e = \sigma_{ys0}
$$
\n
$$
\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{rz}}{\partial r} + \frac{\tau_{rz}}{r} + f_z = 0 \qquad \qquad \mathbf{\varepsilon} = \mathbf{\varepsilon}_e + \mathbf{\varepsilon}
$$
\n**Boundary condition**\n
$$
\mathbf{u} \cdot \mathbf{n} = 0 \text{ (at bottom edge)} \qquad T_n = \begin{cases} 0, & \text{if } \sigma_e = \sigma_{ys0} \\ -p_n g_n \end{cases}
$$

• **Boundary condition**

• **Stress-strain relationship**

$$
\begin{bmatrix}\n\mathbf{\varepsilon}_{r} \\
\mathbf{\varepsilon}_{\varphi} \\
\mathbf{\varepsilon}_{z} \\
\gamma_{zr}\n\end{bmatrix} = \begin{bmatrix}\n\frac{1}{E_{r}} & \frac{V_{r\varphi}}{E_{\varphi}} & \frac{V_{rz}}{E_{z}} & 0 \\
\frac{V_{\varphi r}}{E_{r}} & \frac{1}{E_{\varphi}} & \frac{V_{\varphi z}}{E_{z}} & 0 \\
\frac{V_{zr}}{E_{r}} & \frac{V_{z\varphi}}{E_{\varphi}} & \frac{1}{E_{z}} & 0 \\
0 & 0 & 0 & \frac{1}{G_{zr}}\n\end{bmatrix} \begin{bmatrix}\n\sigma_{r} \\
\sigma_{\varphi} \\
\sigma_{z} \\
\tau_{zr}\n\end{bmatrix}
$$
\n**(elastic stage)**

$$
\text{if } \sigma_e = \sigma_{\scriptscriptstyle{ys}0}, \quad \sigma_{\scriptscriptstyle{ys}} = \sigma_{\scriptscriptstyle{ys}0} + \sigma_{\scriptscriptstyle{h}}(\varepsilon_{\scriptscriptstyle{pe}}) \, .
$$

- **e p ε ε ε (plastic stage)**
- **Contact behaviour**

$$
T_n = \begin{cases} 0, & \text{if } gap > 0 \\ -p_n g_n, & \text{if } gap \le 0 \end{cases}
$$

11

12

Mechanical behaviors in REBCO coil

 $-1/2$

• **Governing equations T-A formulation** $\left(\text{a} \right)$

(all domains) **quations 1-A form**
 μ **J** (all domains)
0 (all domains) H_{HTS} **J** = $-\partial$ **B** / ∂t (REBCO domains) μ ρ **Governing equations**
 $\begin{cases} \nabla \times \nabla \times \mathbf{A} = \mu \mathbf{J} \n\end{cases}$ (a Governing equations
 $\begin{cases} \nabla \times \nabla \times \mathbf{A} = \mu \mathbf{J} & (\varepsilon) \\ \nabla \cdot \mathbf{A} = 0 & (\varepsilon) \\ \nabla \cdot \mathbf{A} = \mathbf{I} & \mathbf{I} \end{cases}$ $\nabla \times \nabla \times \mathbf{A} = \mu \mathbf{J}$ (all dom
 $\nabla \cdot \mathbf{A} = 0$ (all don
 $\nabla \times \rho_{HTS} \mathbf{J} = -\partial \mathbf{B} / \partial t$ (REBCO) \bf{a} equ $\bf{A} = \mu \bf{J}$ **A** \times **A** = μ .
 \cdot **A** = 0
 J = - ∂ **B** Zhang et al 2017 SUST 30: 024005

• **E-J constitutive law**

$$
\rho_{\text{HTS}} = \frac{E_c}{J_c(B,\theta)} \left| \frac{J_{\varphi}}{J_c(B,\theta)} \right|^n
$$

• **Magnetic field anisotropy of Ic**

$$
I_c(B,\theta) = \frac{b_0}{(B+\beta_0)^{\alpha_0}} + \frac{b_1}{(B+\beta_1)^{\alpha_1}} \left[\pi_1^2(B)\cos^2(\theta-\phi_1) + \sin^2(\theta-\phi_1) \right]^{-1/2}
$$

$$
w_1(B) = c_1 \left[B + \left(\frac{1}{c_1} \right)^{1/\varepsilon_1} \right]^{-\varepsilon_1}
$$

Xia et al 2019 SUST 32: 095005

 (b) ^{\boldsymbol{z}}

2D

• **Boundary conditions**

$$
\begin{cases}\n\frac{\partial T_n}{\partial n} = 0 & \text{on } \Gamma_1 \\
\int_{\Gamma_2} T_n dl = I_0 & \text{on } \Gamma_2\n\end{cases}
$$

Comparison between simulation and experimental results for 5-turn REBCO coil

Coil parameters

Elastic constants

Takahashi et al, 2020, IEEE supercond 30: 4602607

$$
B_{\scriptscriptstyle SCE} = B_{\scriptscriptstyle tot} - B_{\scriptscriptstyle trans}
$$

✓ **Screening current reduces the total field at the fully charged state, and results in the remanent field of ~0.8 T.**

Some parameters of coil are given in Berrospe-Juarez et al 2020 IEEE supercond 30: 4600705 14

Pancake 20

Pancake 36 Mid-plane

➢ **Current and electromagnetic force after fully charged**

- Screening current significantly changes the distribution of total current and Lorentz force.
- The maximum radial Lorentz force is increased almost 400% by screening current effect.

- The maximum tensile hoop stress appears at the outer tapes of pancakes 9 and 10 for REBCO coil 1.
- The calculated maximum stress is high enough to cause the plastic deformation of local conductor, which correlates well with the practical observation in the test REBCO coils.

<u>"To"</u> 1909 U UNI

➢ **Peak stress and strain in REBCO magnets (only Lorentz force)**

➢ **Stress-strain states considering winding, cooling and excitation**

Overlarge local stress of ~800 MPa

➢ **Current sweep reversal (CSR)**

Current ramp path

- \checkmark Opposite screening currents appear in the ends of tape.
- \checkmark Penetration depth increase with the increase of overshooting current

➢ **Current distribution**

➢ **Changes of hoop stress and strain using CSR**

Hoop stress (MPa) Hoop strain (%)

 $5%$

10%

15%

70

Top

4

20%

Future work

- **1. Numerical simulation of 3D magnet structure**
- **2. Fully coupled simulation**
- **3. Complicated mechanical response, such as plastic deformation, delamination,**
- **buckling and cracking**
- **4. Dynamic mechanical response……**

Thank you for your attention!