

Modelling of the pulsed field magnetization of a (RE)BaCuO bulk with a superconducting weld

*Rémi Dorget^{1,2}, Kévin Berger¹, Joseph Longji Dadiel³, Kimiaki Sudo³, Naomichi Sakai³, Tetsuo Oka³, Masato Murakami³ and Jean Lévêque¹

¹ Université de Lorraine, GREEN, F-54000 Nancy, France

² Safran Tech, Electrical & Electronic Systems Research group, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France

³ Shibaura Institute of Technology ,3 Chome-7-5 Toyosu, Koto, Tokyo 135-8548 - Japan

7th International Workshop on Numerical Modelling of High Temperature Superconductors - 22/06/2021

- Top seeded melt growth
- RE-Ba-Cu-O bulk welding process
- Description of the model
- Results

Top seeded melt growth (TSMG)

- Pellet of RE-Ba-Cu-O pressed then melted and slowly cooled to let the crystal grow
- The seed crystal (RE-Ba-Cu-O with higher melting point) give the crystal orientation

Examples of seed crystals : Nd-Ba-Cu-O or Sm-Ba-Cu-O

• Several hours of oxygen annealing

Bulk welding process

- Solder material: RE-Ba-Cu-O with low melting point
- Process similar to TSMG: The solder material is melted while the bulk body act as the seed

Material	Tp [°C]
Y-Ba-Cu-O	1008 °C
Er-Ba-Cu-O	980 °C
Y-Ba-Cu-O + 10%Ag	956 °C
Er-Ba-Cu-O + 10%Ag	937 °C

T [°C]

5 h

950 °C

3 h

940 °C

Example of the temperature process for joining

12 h

Good grain connection is obtain along the 110 plane

920 °C

5 h

t [h]

Case study

- Simulation of the weld behavior during pulsed field magnetisation (PFM)
- Bulk body:
 - ✤Radius : 30 mm
 - ✦Height : 15 mm
 - Homogeneous superconducting properties
- Weld:
 - Thickness : 1 mm
 - Superconducting properties different from the bulk body
- Objective: study the magnetisation for different welds

Simulated setup

- Initial temperature : T_a = 60 K
- Cryocooler cooling power : P_{cryo} = 50W
- Applied magnetic field : B_a = [0.5 T : 9 T]

Electromagnetic and thermal models

600 J_c (A/mm²)

•
$$n(B,T) = \left(n_1 + \frac{n_0 - n_1}{1 + B/B_0}\right) \frac{T_0}{T}$$

400

200

0

0

2

B(**T**)

3

Electromagnetic model

• H-formulation

T = 60 K

T = 77 K

--- T = 70 K

4

5

Simulation parameters

• Due to symmetries $\rightarrow \frac{1}{4}$ of the geometry is simulated

Parameter	Value	Description
J _{c0}	300 A/mm ²	Self field critical current density at 77 K
B ₀	0.5 T	Magnetic field dependance constant
β	1.2	Magnetic field dependance exponent
n_0	20	n exponent at 77 K and $B = 0 T$
n_1	6	n exponent at 77 K and $B >> B_0$
T_c	92 K	Critical temperature
T_0	77 K	Reference temperature
T_a	60 K	Initial temperature
B _a	[0.5 T : 9 T]	Applied flux density
τ	10 ms	Pulse time constant
α	[0.25 : 1]	Weld to bulk body critical current ratio
P _{cryo}	50 W	Cooling power of the cold head
d	6 g/cm ³	RE-Ba-Cu-O density
С	150 J/(kg.K)	Heat capacity
γ	5 W/(m.K)	Thermal conductivity

Results – Field maps

Results – Trapped flux

Trapped flux on the bulk surface:

- Above 2 T \rightarrow weld reduces the trapped flux
- Below 2 T → weld increases the trapped flux (up to 13 %)

Conclusion

- A superconducting weld with a reduced critical current help the magnetic field to penetrate the bulk
 - ✤Increased trapped flux at low applied field
 - Decreased trapped flux at high applied field
 - \rightarrow Applications with small inductor coil (magnetisation from armature windings)
- The solder can be doped to improve its thermal properties at the expense of the magnetic properties

Thank you for your attention

Rémi Dorget, Table (+33) (0)6 82 52 22 86, Carrier e-mail: <u>remi.dorget@univ.lorraine.fr</u>

