Circuit modelling of Transformer-Rectifier Flux Pumps

Sriharsha Venuturumilli Post Doctoral Fellow Robinson Research Institute, VUW, NZ.

Co-authors: Prof. Jianzhao Geng, Bradley Leuw, Dr. Chris Bumby and Prof. Rod Badcock

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd – 23rd June 2021, Virtual (Nancy, France)

Paihau—Robinson Research Institute

Outline

≻ What is a flux pump?

≻ How does a Transformer-Rectifier FP work?

≻ Model – How is it build?

- Developing varying resistance models
- > Incorporating $I_c(B)$ and n(B) values into the resistance models

> Model verification with experimental results

> Summary

Paihau—Robinson Research Institute

What is Flux Pump?

A flux pump essentially works as a stable high current source for powering the superconducting magnets.

- Very compact
- Light weight
- Works in cryogenic temperature
 No need for room temperature to cryogenic temperature high current leads
- ➢ High efficiency

Jianzhao Geng et al 2020 Supercond. Sci. Technol. **33** 045005

Paihau—Robinson Research Institute

Flux Pump types

Flux pumps are currently being categorized into 2 types:

- Dynamo flux pumps
- Transformer Rectifier flux pumps

Chris W Bumby et al 2016 Supercond. Sci. Technol. 29 024008

Jianzhao Geng et al 2020 Supercond. Sci. Technol. **33** 045005

Paihau—Robinson Research Institute

Transformer Rectifier FP

Parameter	Description
R _p	Constant Resistance of the Copper winding
R _s	Varying HTS secondary resistance as a function of current
R_{sw1}, R_{sw2}	Varying resistance of the switches as a function of both current and field.
R _{coil}	Varying resistance of the HTS load coil as a function of the current

Paihau—Robinson Research Institute

Transformer Rectifier FP Charging path R_{sw_2} R_p R_s 0.8 Current (A) ι_p R_{coil} R_{sw}, v_{col} 0 ν_s Curren -0.4 coil ¥ Perpendicular Field (T) 0.9 0.6 **Discharging path** R_{sw_2} R_p R_s 0.3 Switch 1 Switch 2 0 ιp 1.5 R_{coil} R_{sw_1} 1.2 vcou v

Current (A) 0.9 0.6 0.3 Load Coil 0 0 1 2 3 4 5 6 7 8 9 10 Time (s)

Coupled & Uncoupled Multiphysics Modelling OS-C2-AM (23-06-2021) - Sriharsha

¥

coil

Paihau—Robinson Research Institute

Circuit Model

Key components:

- Transformer model
 - Electro-magnetic model
- Varying resistance model
 - R(I)
 - R(B,I)

Key assumptions:

- Isothermal (LN₂ temperature)
- AC loss not included

Paihau—Robinson Research Institute

Circuit Model (Transformer Model)

Non-linear Electro-magnetic model

$$V_p = -N_p \frac{d\varphi}{dt} \qquad \qquad V_s = -N_s \frac{d\varphi}{dt}$$

$$\mathbf{F}_p = N_p I_p \qquad \qquad \mathbf{F}_s = N_s I_s$$

$$F_{\mathcal{R}} = \varphi \times \mathcal{R}(B - H)$$

$$\mathbf{F}_p = \mathbf{F}_{\mathcal{R}} + \mathbf{F}_s$$

Paihau—Robinson Research Institute

Circuit Model (Varying resistance)

$$R_{sc} = \frac{E_o}{I_c} \left(\frac{I_{HTS}}{I_c}\right)^{n-1} \times l_{tape}$$

$$R_{sb} = \frac{\rho_{sb}}{w \times t_{sb}} \times l_{tape}$$

$$\frac{1}{R_{tape}} = \frac{1}{R_{sc}} + \frac{1}{R_{sb}}$$

We can break this circular problem by adding a delay!

- Time step needs to be small
- Slows down simulation
- Transient modelling results depends on the time step.

Paihau—Robinson Research Institute

Circuit Model (Varying resistance)

$$R_{sc} = \frac{E_o}{I_c} \left(\frac{I_{HTS}}{I_c}\right)^{n-1} \times l_{tape}$$

$$R_{sb} = \frac{\rho_{sb}}{w \times t_{sb}} \times l_{tape}$$

$$\frac{1}{R_{tape}} = \frac{1}{R_{sc}} + \frac{1}{R_{sb}}$$

We can also break this circular problem by using the total current!

- Time step doesn't need to be small
- Quick simulation
- Not accurate!

Paihau—Robinson Research Institute

Circuit Model (Varying resistance)

Paihau—Robinson Research Institute

Circuit Model (I_c(B) switch)

Using a 2D lookup table, we can incorporate $B_c(B, \theta = 0^\circ)$ characteristics into the circuit models.

- Ensure you have plenty of points to interpolate smoothly.
- A relative tolerance of 10⁻²⁰ can also be achieved without convergence error.

Note: This can be made as 3D look up table as well, if any one wants to incorporate Temperature/angle dependence.

HTS wire database: http://htsdb.wimbush.eu/

Paihau—Robinson Research Institute

Model verification

Switch Specifications

Parameters	Values
I_c of the HTS tape	351.54 A
Length of the HTS tape	60 mm
Width of the HTS tape, w	6 mm
Thickness of the stabilizer, t _{sb}	50 µm
Resistivity of the stabilizer, ρ_{sb}	0.19 μΩ.cm

Load coil Specifications

Parameters	Values
Inductance of the load coil, L_{coil}	2.42 mH
I _c of the HTS tape	55A
Length of the HTS tape	40 m
Width of the HTS tape, w	4 mm
Thickness of the stabilizer, t _{sb}	50 µm
Resistivity of the stabilizer, ρ_{sb}	0.19 μΩ.cm

Paihau—Robinson Research Institute

Varying the Input current magnitude

Operating Conditions

Parameters	Values
Field applied	1 T each on SW1 and SW2
Frequency	1 Hz

Paihau—Robinson Research Institute

Varying the Input current magnitude

Paihau—Robinson Research Institute

Varying the Frequency

Flux Pumping works on the net DC voltage applied across the load coil.

- Saturated current and charging time doesn't change with frequency.
- But AC losses will come into effect for higher frequencies.
- Similarly, the ripple content increases with lower frequency. Thus an optimization is needed to find the ideal frequency.
- Experimentally verified.

Paihau—Robinson Research Institute

Conclusions

- I_c(B) characteristics of the HTS tapes were included in the circuit model, enabling us for much higher accuracy.
- Electromagnetic circuit models are built and verified against the experimental results.
 - Gives us the ability to test the system level models from the existing component level models.
- This helps us to understand and optimise the flux pump for high efficiency and high current.
- Unlike, dynamo flux pumps, transformer rectifier flux pump current characteristics doesn't change with frequency.

