Circuit modelling of Transformer-Rectifier Flux Pumps

Sriharsha Venuturumilli Post Doctoral Fellow Robinson Research Institute, VUW, NZ.

Co-authors: Prof. Jianzhao Geng, Bradley Leuw, Dr. Chris Bumby and Prof. Rod Badcock

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd - 23rd June 2021, Virtual (Nancy, France)

Paihau-Robinson **Research Institute**

Outline

➢What is a flux pump?

➢How does a Transformer-Rectifier FP work?

\triangleright Model – How is it build?

- ➢ Developing varying resistance models
- \triangleright Incorporating I_c(B) and n(B) values into the resistance models

➢Model verification with experimental results

➢Summary

Paihau-Robinson **Research Institute**

What is Flux Pump?

A flux pump essentially works as a stable high current source for powering the superconducting magnets.

- ➢ Very compact
- \triangleright Light weight
- \triangleright Works in cryogenic temperature \triangleright No need for room temperature to cryogenic temperature high current leads
- \triangleright High efficiency

Jianzhao Geng *et al* 2020 *Supercond. Sci. Technol.* **33** 045005

Paihau-Robinson **Research Institute**

Flux Pump types

Flux pumps are currently being categorized into 2 types:

- Dynamo flux pumps
- Transformer Rectifier flux pumps

Jianzhao Geng *et al* 2020 *Supercond. Sci. Technol.* **33** 045005 Chris W Bumby *et al* 2016 *Supercond. Sci. Technol.* **29** 024008

Paihau-Robinson **Research Institute**

Transformer Rectifier FP

Paihau-Robinson **Research Institute**

Transformer Rectifier FP Charging path R_{sw_2} R_p $R_{\rm s}$ 0.8 Current (A) ι_p R_{coil} R_{sw_1} v_{col} $\mathbf 0$ $\nu_{\rm c}$ Curren -0.4 coil ╈ Perpendicular Field (T) 0.9 0.6 **Discharging path**
 R_s πR_{sw_2} R_p R_s 0.3 Switch 1 Switch₂ Ω ι_p 1.5 ${}^{\prime\prime}R_{coil}$

HT5 2020

Modelling

Paihau-Robinson

Research Institute

Coupled & Uncoupled Multiphysics Modelling OS-C2-AM (23-06-2021) - Sriharsha

coil

 R_{sw_1}

 $\nu_{\rm c}$

╈

 v_{coh}

7th International Workshop on Numerical Modelling of High Te 22nd – 23nd June 2021, Virtual (Nancy, France)

Circuit Model

Key components:

- Transformer model
	- Electro-magnetic model
- Varying resistance model
	- $R(I)$
	- \cdot R(B,I)

Key assumptions:

- \triangleright Isothermal (LN₂ temperature)
- ➢ AC loss not included

Paihau-Robinson **Research Institute**

Circuit Model (Transformer Model)

Non-linear Electro-magnetic model

$$
V_p = -N_p \frac{d\varphi}{dt} \qquad V_s = -N_s \frac{d\varphi}{dt}
$$

$$
F_p = N_p I_p \qquad F_s = N_s I_s
$$

$$
\mathcal{F}_{\mathcal{R}} = \varphi \times \mathcal{R}(B - H)
$$

$$
F_p = F_{\mathcal{R}} + F_s
$$

Paihau-Robinson **Research Institute**

Circuit Model (Varying resistance)

$$
R_{sc} = \frac{E_o}{I_c} \left(\frac{I_{HTS}}{I_c}\right)^{n-1} \times l_{tape}
$$

$$
R_{sb} = \frac{\rho_{sb}}{w \times t_{sb}} \times l_{tape}
$$

$$
\frac{1}{R_{tape}} = \frac{1}{R_{sc}} + \frac{1}{R_{sb}}
$$

We can break this circular problem by adding a delay!

- Time step needs to be small
- Slows down simulation
- Transient modelling results depends on the time step.

Paihau-Robinson **Research Institute**

Circuit Model (Varying resistance)

$$
R_{sc} = \frac{E_o}{I_c} \left(\frac{I_{HTS}}{I_c}\right)^{n-1} \times l_{tape}
$$

$$
R_{sb} = \frac{\rho_{sb}}{w \times t_{sb}} \times l_{tape}
$$

$$
\frac{1}{R_{tape}} = \frac{1}{R_{sc}} + \frac{1}{R_{sb}}
$$

We can also break this circular problem by using the total current!

- Time step doesn't need to be small
- Quick simulation
- Not accurate!

Paihau-Robinson **Research Institute**

Circuit Model (Varying resistance)

Paihau-Robinson **Research Institute**

Coupled & Uncoupled Multiphysics Modelling OS-C2-AM (23-06-2021) - Sriharsha

 $R_{sb} =$

$Circuit Model (I_c(B) switch)$

Using a 2D lookup table, we can incorporate $B_c(B, \theta = 0^\circ)$ characteristics into the circuit models.

- Ensure you have plenty of points to interpolate smoothly.
- A relative tolerance of 10^{-20} can also be achieved without convergence error.

Note: This can be made as 3D look up table as well, if any one wants to incorporate Temperature/angle dependence.

HTS wire database: http://htsdb.wimbush.eu/

Model verification

Switch Specifications

Load coil Specifications

Paihau-Robinson **Research Institute**

Varying the Input current magnitude

Operating Conditions

Paihau-Robinson **Research Institute**

Varying the Input current magnitude

Paihau-Robinson **Research Institute**

Varying the Frequency

Flux Pumping works on the net DC voltage applied across the load coil.

- Saturated current and charging time doesn't change with frequency.
- But AC losses will come into effect for higher frequencies.
- Similarly, the ripple content increases with lower frequency. Thus an optimization is needed to find the ideal frequency.
- Experimentally verified.

Paihau-Robinson **Research Institute**

Conclusions

- $I_c(B)$ characteristics of the HTS tapes were included in the circuit model, enabling us for much higher accuracy.
- Electromagnetic circuit models are built and verified against the experimental results.
	- Gives us the ability to test the system level models from the existing component level models.
- This helps us to understand and optimise the flux pump for high efficiency and high current.
- Unlike, dynamo flux pumps, transformer rectifier flux pump current characteristics doesn't change with frequency.

Paihau-Robinson **Research Institute**

