

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd - 23rd June 2021, Virtual (Nancy, France)

Monte Carlo simulations of amodel cuprate

Yury Panov, Alexander Moskvin, Vasilii Ulitko

Ural Federal University, Institute of Natural Sciences and Mathematics Ekaterinburg, Russia

. (1)

 $y_2' = 2n$, and the points representing states

Objectives

One of the topical problems of the high- T_c cuprate physics is the coexistence and competition of antiferromagnetic, superconducting, and charge orderings, the study of which is complicated by the presence of heterogeneity due to dopants or non-isovalent substitution, as well as to the internal electronic tendency to heterogeneity. We use the pseudospin formalism and Monte Carlo method for constructing phase diagrams and studying the features of the thermodynamic properties for such systems.

Model

A minimal model for the $CuO₄$ centers in $CuO₂$ plane in cuprates [1,2]:

Effective pseudospin Hamiltonian $S = 1$ of the model cuprate

- $*\;\;{\cal H}^{(2)}_{tr}=-t_{b}$ \sum $\langle ij \rangle$ (S_+^2) $^{2}_{+i}S^{2}_{-}$ $^{2}_{-j} + S^{2}_{+}$ $^{2}_{+j}S^{2}_{-}$ $\binom{2}{-i}$ – the two-particle transport.
- $* \mu$ $\sum S_{zi}$ i

– accounting for the charge density constraint, $nN = \langle \sum_i S_{zi} \rangle = const.$ The sums run over the sites of a 2D square lattice, $\langle ij \rangle$ means the nearest neighbors.

$$
\mathcal{H} = \mathcal{H}_{ch} + \mathcal{H}_{exc} + \mathcal{H}_{tr}^{(1)} + \mathcal{H}_{tr}^{(2)} - \mu \sum_{i} S_{zi}
$$

Here,

- * $\mathcal{H}_{ch} = \Delta \sum$ i $S_{zi}^2 + V \sum$ $\langle ij \rangle$ $S_{zi}S_{zj}$ – the on-site and inter-site nearest-neighbour density-density correlations.
- $*$ $\mathcal{H}_{\mathrm{ex}}=$ Js $^2\sum \boldsymbol{\sigma}_i \boldsymbol{\sigma}_j$ $\langle ij \rangle$ – the antiferromagnetic Heisenberg exchange coupling for the $\sigma = P_0$ s/s, the on-site spin density $P_0 = 1 - S_z^2$ $\frac{2}{z}$, s is the spin $s = 1/2$ operator.
- $*\,\mathcal{H}_{tr}^{(1)}\,=\,-t_{\rho}$ \sum $\langle ij \rangle$ (P_i^+) $P_j^+ P_j^+ + P_j^+$ $\left(p_j^+ P_j\right) - \; t_n$ \sum $\langle ij \rangle$ (N_i^+) $i^{+}N_{j}+N_{j}^{+}$ $j^{+}N_{i}$ − t pn 2 $\sum (P_i^+$ $\langle ij \rangle$ $P_j^+ N_j^+ + P_j^+$ $j^{+}N_{i}+N_{i}^{+}$ $i^+ P_j + N_j^+$ $j^{+}P_{i}$

– the correlated one-particle transport, P and N operators are the combinations of the pseudospin $S = 1$ operators: $P^+ \propto (S_+ + T_+), \quad N^+ \propto (S_+ - T_+), \quad T_+ = S_z S_+ + S_+ S_z.$

It is well known, that the uniform distribution of randomly generated vectors over the unit sphere is given by the following state selection algorithm: 1) $\phi = 2\pi\gamma_1$; 2) $\theta = \arccos \gamma_2$, where $\gamma_{1,2}$ are random numbers in the [0, 1] range. The (ϕ, θ) -histogram is shown on the left panel, and this produces the flat (ϕ, z) histogram (right panel).

$$
CuO46- centers,= 1/2 operator.
$$

where $0 \le \theta \le \pi$, $0 \le \phi \le \pi$, $0 \le \alpha \le 2\pi$, $0 \le \beta \le 2\pi$. We use the Metropolis algorithm for a system with conservation of the total charge. The charge at the site, n_i , is related to the parameters of the wave function by the expression

We require when the states of sites 1 and 2 change simultaneously, the total charge of the pair is preserved, $n_1 + n_2 = n'_1$ $n'_1 + n'_2$ uniformly fill the allowed area in the octant.

> $\Phi(-1 + 2|n|)$ $2|n|$,

 $=\sqrt{1-|n_i|}\;$ sn $(\gamma_i K\left(m(n_i)\right)$, $m(n_i))$, $\frac{\theta_i}{2} = \gamma_i$.

 n_i $1 - \cos^2 \frac{\theta_1}{2}$ 2 . If $n_i = 0$ and cos $\frac{\theta_i}{2}$ $\frac{\theta_i}{2}=1$,

 $m(x) = \frac{1-|x|}{1+|x|}$ $\frac{1-|x|}{1+|x|},$ $\Theta(x)$ is the Heaviside step function, $\Pi\left(-1,\frac{\pi}{2}\right)$ 2 $\begin{matrix} \end{matrix}$ $\overline{}$ m) = $\Pi_1(1,$ √ $\overline{m})$ is the complete elliptic integral of the third kind, $K(m)$ is the complete elliptic integral of the first kind;

- 2. calculation of the value $n_2 = 2n n_1$;
- 3. calculation of cos $\frac{\theta_i}{2}$ $\frac{\theta_i}{2}$ from equation cos $\theta_{\scriptscriptstyle I}$ 2 where γ_i , $i=1,2$, are the random uniformly distributed quantities, $0 \leq \gamma_i \leq 1$, sn (x, m) is the Jacobi function. If $n_i = 0$, we take $\cos \frac{\theta_i}{2}$
- 4. calculation of cos ϕ_i from equation cos $\phi_i =$

 ϕ_i is a random uniformly distributed quantity, $0 \leq \phi_i \leq \pi$.

The uniform distribution of random unit vectors

where A_l and B_m are the on-site operators, and the summation is performed over all sites of the square lattice. To determine the type of ordering, we monitored the following structure factors:

- $F_{(\pi,\pi)}(\sigma,\sigma)$ for antiferromagnetic (AFM) order,
- $F_{(\pi,\pi)}(S_z, S_z)$ for the charge order (CO),
- $F_{(0,0)}(S^2_+, S^2_-)$ for the superconducting order (SC),
- $F_{(0,0)}(P^+, P)$ for the "metal" phase (M) .

The spin $S = 1$ problem

The wave function of the $S = 1$ triplet is a point in the octant of the unit sphere:

$$
|\Psi\rangle = c_{+1} |+1\rangle + c_0 \, |0\rangle + c_{-1} \, |-1\rangle \, , \qquad c_{\pm 1} = \sin \frac{\theta}{2} \cos \frac{\phi}{2} e^{\mp i \frac{\alpha}{2}}, \quad c_0 = \cos \frac{\theta}{2} e^{i \frac{\beta}{2}},
$$

Right panel: The Monte Carlo $T - x$ (x the charge doping) phase diagram for the model cuprate calculated with $\Delta = 0.8$, $V = 0.625$, $J = 1$, $t_p = 0.35$, $t_n = 0$, $t_{pn} = -0.24$, (all in units of the t_b). The critical temperatures for the AFM, CO, and SC phases were determined from the jump in the structure factor from zero to a certain finite value.

$$
2n_i = (1 - \cos \theta_i) \cos \phi_i
$$

State selection algorithm

1. caclulation of n_1 , $-1 + n + |n| \le n_1 \le 1 + n - |n|$, from equation $G_1(n_1; n) = \gamma$, where γ is a random uniformly distributed quantity, $0 \leq \gamma \leq 1$,

$$
G_1(n_1; n) = \frac{\Phi(n_1) - \Theta(n)}{\Phi(1 - n)}
$$

$$
\Phi(x) = \text{sgn } x \left[\frac{2\sqrt{1+|x|}}{\pi} \left(\frac{2\,\Pi\left(-1,\frac{\pi}{2}\,\middle|\,m(x)\right)}{1+|x|} - m(x)\,K\left(m(x)\right) \right) - \frac{1}{2} \right] + \frac{1}{2},
$$

Monte Carlo simulation

In Monte Carlo simulation, we calculated the structure factors

 $F_q(A, B) =$

$$
\frac{1}{N^2} \sum_{lm} e^{i q (r_l - r_m)} \langle A_l B_m \rangle , \qquad (2)
$$

Results

Left panel: The dependencies on the charge doping of the structure factors in the ground state calculated with parameters $\Delta = 0.8$, $V = 0.625$, $J = 1$, $t_p = 0.35$, $t_n = 0$, $t_{pn} = -0.24$, (all in units of the t_b).

Acknowledgements

The research was supported by the Ministry of Education and Science of the Russian Federation, project FEUZ-2020-0054.

References

[1] A.S. Moskvin, True Charge-Transfer Gap in Parent Insulating Cuprates, Phys. Rev. B 84, 075116 (2011) [2] A.S. Moskvin, Perspectives of Disproportionation Driven Superconductivity in Strongly Correlated 3d Compounds, J. Phys.: Cond. Mat. 25, 085601 (2013); [3] A.S. Moskvin, Y.D. Panov, Electron-Hole Dimers in the Parent Phase of Quasi-2D Cuprates, Phys. Solid State 61, 1553 (2019) [4] A. S. Moskvin, Y. D. Panov, Nature of the Pseudogap Phase of HTSC Cuprates, Phys. Solid State **62**, 1554 (2020)

