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Objectives
One of the topical problems of the high-Tc cuprate physics is the coexistence and
competition of antiferromagnetic, superconducting, and charge orderings, the study of
which is complicated by the presence of heterogeneity due to dopants or non-isovalent
substitution, as well as to the internal electronic tendency to heterogeneity.

We use the pseudospin formalism and Monte Carlo method for constructing phase
diagrams and studying the features of the thermodynamic properties for such systems.

Model
A minimal model for the CuO4 centers in CuO2 plane in cuprates [1,2]:

CuO4 center effective pseudospin conventional
state Cu ion state S=1 state spin state

CuO7−4 Cu1+, 3d10 −1 0

CuO6−4 Cu2+, 3d9 0 ± 1
2

CuO5−4 Cu3+, 3d8 +1 0

Effective pseudospin Hamiltonian S = 1 of the model cuprate

H = Hch +Hexc +H(1)tr +H(2)tr − µ
∑
i

Szi

Here,

∗ Hch = ∆
∑
i

S2zi + V
∑
〈i j〉

SziSzj

– the on-site and inter-site nearest-neighbour density-density correlations.

∗ Hex = Js2
∑
〈i j〉

σiσj

– the antiferromagnetic Heisenberg exchange coupling for the CuO6−4 centers,
σ = P0s/s, the on-site spin density P0 = 1− S2z , s is the spin s = 1/2 operator.

∗ H(1)tr = −tp
∑
〈i j〉

(
P+i Pj + P+j Pi

)
− tn

∑
〈i j〉

(
N+i Nj + N+j Ni

)
−
tpn
2

∑
〈i j〉

(
P+i Nj + P+j Ni + N+i Pj + N+j Pi

)
– the correlated one-particle transport, P and N operators are the combinations
of the pseudospin S = 1 operators:
P+ ∝ (S+ + T+), N+ ∝ (S+ − T+), T+ = SzS+ + S+Sz .

∗ H(2)tr = −tb
∑
〈i j〉

(
S2+iS

2
−j + S2+jS

2
−i
)

– the two-particle transport.

∗ −µ
∑
i

Szi

– accounting for the charge density constraint, nN =
〈∑

i Szi
〉

= const.

The sums run over the sites of a 2D square lattice, 〈i j〉 means the nearest neighbors.

The uniform distribution of random unit vectors
It is well known, that the uniform distribution of randomly generated vectors over the unit
sphere is given by the following state selection algorithm: 1) φ = 2πγ1; 2) θ = arccos γ2,
where γ1,2 are random numbers in the [0, 1] range.
The (φ, θ)-histogram is shown on the left panel, and this produces the flat (φ, z)-
histogram (right panel).
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The spin S = 1 problem
The wave function of the S = 1 triplet is a point in the octant of the unit sphere:

|Ψ〉 = c+1 |+1〉+ c0 |0〉+ c−1 |−1〉 , c±1= sin
θ

2
cos

φ

2
e∓i

α
2 , c0= cos

θ

2
e i

β
2 ,

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ π, 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π.
We use the Metropolis algorithm for a system with conservation of the total charge.
The charge at the site, ni , is related to the parameters of the wave function by the
expression

2ni = (1− cos θi) cosφi . (1)

We require when the states of sites 1 and 2 change simultaneously, the total charge
of the pair is preserved, n1 + n2 = n′1 + n′2 = 2n, and the points representing states
uniformly fill the allowed area in the octant.

State selection algorithm
1. caclulation of n1, −1 + n + |n| ≤ n1 ≤ 1 + n − |n|, from equation G1(n1; n) = γ,

where γ is a random uniformly distributed quantity, 0 ≤ γ ≤ 1,

G1(n1; n) =
Φ(n1)−Θ(n) Φ(−1 + 2|n|)

Φ(1− 2|n|) ,

Φ(x) = sgn x

[
2
√

1 + |x |
π

(
2 Π
(
−1, π2

∣∣m(x)
)

1 + |x | −m(x)K (m(x))

)
−

1

2

]
+

1

2
,

m(x) = 1−|x |
1+|x | , Θ(x) is the Heaviside step function, Π

(
−1, π2

∣∣m) = Π1(1,
√
m)

is the complete elliptic integral of the third kind, K(m) is the complete elliptic
integral of the first kind;

2. calculation of the value n2 = 2n − n1;

3. calculation of cos θi2 from equation cos
θi
2

=
√

1− |ni | sn (γiK (m(ni)) , m(ni)) ,

where γi , i = 1, 2, are the random uniformly distributed quantities, 0 ≤ γi ≤ 1,
sn (x,m) is the Jacobi function. If ni = 0, we take cos θi2 = γi .

4. calculation of cosφi from equation cosφi =
ni

1− cos2 θi2
. If ni = 0 and cos θi2 = 1,

φi is a random uniformly distributed quantity, 0 ≤ φi ≤ π.

Monte Carlo simulation
In Monte Carlo simulation, we calculated the structure factors

Fq(A,B) =
1

N2

∑
lm

e iq (rl−rm) 〈AlBm〉 , (2)

where Al and Bm are the on-site operators, and the summation is performed over all sites
of the square lattice. To determine the type of ordering, we monitored the following
structure factors:

• F(π,π)(σ,σ) for antiferromagnetic (AFM) order,

• F(π,π)(Sz , Sz) for the charge order (CO),

• F(0,0)(S
2
+, S

2
−) for the superconducting order (SC),

• F(0,0)(P
+, P ) for the “metal” phase (M).

Results
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Left panel: The dependencies on the charge doping of the structure factors in the
ground state calculated with parameters ∆=0.8, V =0.625, J =1, tp =0.35, tn =0,
tpn = -0.24, (all in units of the tb).

Right panel: The Monte Carlo T - x (x the charge doping) phase diagram for the model
cuprate calculated with ∆=0.8, V =0.625, J =1, tp =0.35, tn =0, tpn = -0.24, (all in
units of the tb). The critical temperatures for the AFM, CO, and SC phases were
determined from the jump in the structure factor from zero to a certain finite value.
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