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Abstract

One of the topical problems of the high-Tc cuprate physics is the
coexistence and competition of antiferromagnetic, superconducting, and
charge orderings, the study of which is complicated by the presence of
heterogeneity due to dopants or non-isovalent substitution, as well as to
the internal electronic tendency to heterogeneity.

The use of the pseudospin formalism and Monte Carlo method is very
fruitful for constructing phase diagrams and studying the features of the
thermodynamic properties for such systems.
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Model
A minimal model for the CuO4 centers in CuO2 plane in cuprates [1,2]:

CuO4 center effective pseudospin conventional
state Cu ion state S=1 state spin state

CuO7−
4 Cu1+, 3d10 −1 0

CuO6−
4 Cu2+, 3d9 0 ± 1

2

CuO5−
4 Cu3+, 3d8 +1 0

1 A.S. Moskvin, True Charge-Transfer Gap in Parent Insulating Cuprates,
PRB 84, 075116 (2011)

2 A.S. Moskvin, Perspectives of Disproportionation Driven Superconductivity
in Strongly Correlated 3d Compounds, J.Phys.:Cond.Mat. 25, 085601 (2013)

Further development

A.S. Moskvin, Y.D. Panov, Electron-Hole Dimers in the Parent Phase of
Quasi-2D Cuprates, Phys. Solid State 61, 1553 (2019)

A. S. Moskvin, Y. D. Panov, Nature of the Pseudogap Phase of HTSC
Cuprates, Phys. Solid State 62, 1554 (2020)
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Effective pseudospin Hamiltonian (1 of 2)

Effective pseudospin Hamiltonian S = 1 of the model cuprate

H = Hch +Hexc +H(1)
tr +H(2)

tr − µ
∑
i

Szi

Here,
∗ Hch = ∆

∑
i

S2
zi + V

∑
〈ij〉

SziSzj

– the on-site and inter-site nearest-neighbour density-density
correlations.

∗ Hex = Js2
∑
〈ij〉

σiσj

– the antiferromagnetic Heisenberg exchange coupling for the CuO6−
4

centers, σ = P0s/s, the on-site spin density P0 = 1− S2
z , s is the spin

s = 1/2 operator.
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Effective pseudospin Hamiltonian (2 of 2)
Effective pseudospin Hamiltonian S = 1 of the model cuprate

H = Hch +Hexc +H(1)
tr +H(2)

tr − µ
∑
i

Szi

∗ H(1)
tr = −tp

∑
〈ij〉

(
P+
i Pj + P+

j Pi
)
− tn

∑
〈ij〉

(
N+
i Nj +N+

j Ni
)

− tpn
2

∑
〈ij〉

(
P+
i Nj + P+

j Ni +N+
i Pj +N+

j Pi
)

– the correlated one-particle transport, P and N operators are the
combinations of the pseudospin S = 1 operators:
P+ ∝ (S+ + T+), N+ ∝ (S+ − T+), T+ = SzS+ + S+Sz.

∗ H(2)
tr = −tb

∑
〈ij〉

(
S2
+iS

2
−j + S2

+jS
2
−i
)
is the two-particle transport.

∗ −µ
∑
i Szi accounts for the charge constraint, 〈

∑
i Szi〉 = const.

The sums run over the sites of a 2D square lattice, 〈ij〉 means the nearest
neighbors.
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The uniform distribution of random unit vectors
It is well known, that the uniform distribution of randomly generated
vectors over the unit sphere is given by the following state selection
algorithm:

1 φ = 2πγ1;
2 θ = arccos γ2,

where γ1,2 are random numbers in the [0, 1] range.

The (φ, θ)-histogram is shown on the left panel, and this produces the flat
(φ, z)-histogram (right panel).
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The spin S = 1 problem
The wave function of the S = 1 triplet is a point in the octant of the unit
sphere:

|Ψ〉 = c+1 |+1〉+c0 |0〉+c−1 |−1〉 , c±1= sin
θ

2
cos

φ

2
e∓i

α
2 , c0= cos

θ

2
ei
β
2 ,

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ π, 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π.

We use the Metropolis algorithm for a system with conservation of the
total charge.
The charge at the site, ni, is related to the parameters of the wave
function by the expression

2ni = (1− cos θi) cosφi.

We require when the states of sites 1 and 2 change simultaneously, the
total charge of the pair is preserved, n1 + n2 = n′1 + n′2 = 2n, and the
points representing states uniformly fill the allowed area in the octant.
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State selection algorithm (1 of 2)
caclulation of n1, −1 + n+ |n| ≤ n1 ≤ 1 + n− |n|, from equation
G1(n1;n) = γ, where γ is a random uniformly distributed quantity,
0 ≤ γ ≤ 1,

G1(n1;n) =
Φ(n1)−Θ(n) Φ(−1 + 2|n|)

Φ(1− 2|n|)
,

Φ(x) = sgnx

[
2
√

1 + |x|
π

(
2 Π
(
−1, π2

∣∣m(x)
)

1 + |x|
−m(x)K (m(x))

)
− 1

2

]
+

1

2
,

m(x) = 1−|x|
1+|x| , Θ(x) is the Heaviside step function,

Π
(
−1, π2

∣∣m) = Π1(1,
√
m) is the complete elliptic integral of the third

kind, K(m) is the complete elliptic integral of the first kind;

calculation of the value n2 = 2n− n1;

calculation of cos θi2 from equation

cos
θi
2

=
√

1− |ni| sn (γiK (m(ni)) ,m(ni)) , where γi, i = 1, 2, are the

random uniformly distributed quantities, 0 ≤ γi ≤ 1, sn (x,m) is the Jacobi
function. If ni = 0, we take cos θi2 = γi.
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State selection algorithm (2 of 2)

calculation of cosφi from equation cosφi =
ni

1− cos2 θi2
. If ni = 0 and

cos θi2 = 1, φi is a random uniformly distributed quantity, 0 ≤ φi ≤ π.

The (φ, θ)-histogram is shown on the left panel, and this produces the flat
(φ, z)-histogram (right panel).

Yury Panov, Alexander Moskvin, Vasilii UlitkoMonte Carlo simulations of a model cuprate 9 / 12



Monte Carlo simulation

In Monte Carlo simulation, we calculated the structure factors

Fq(A,B) =
1

N2

∑
lm

eiq (rl−rm) 〈AlBm〉 , (1)

where Al and Bm are the on-site operators, and the summation is
performed over all sites of the square lattice.

To determine the type of ordering, we monitored the following structure
factors:

F(π,π)(σ,σ) for antiferromagnetic (AFM) order,
F(π,π)(Sz, Sz) for the charge order (CO),
F(0,0)(S

2
+, S

2
−) for the superconducting order (SC),

F(0,0)(P
+, P ) for the “metal” phase (M).

Yury Panov, Alexander Moskvin, Vasilii UlitkoMonte Carlo simulations of a model cuprate 10 / 12



Results
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Left panel: The dependencies on the charge doping of the structure factors in the
ground state calculated with parameters ∆=0.8, V =0.625, J =1, tp=0.35,
tn=0, tpn= -0.24, (all in units of the tb).

Right panel: The Monte Carlo T -x (x the charge doping) phase diagram for the
model cuprate calculated with ∆=0.8, V =0.625, J =1, tp=0.35, tn=0,
tpn= -0.24, (all in units of the tb). The critical temperatures for the AFM, CO,
and SC phases were determined from the jump in the structure factor from zero
to a certain finite value.
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