

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd – 23rd June 2021, Virtual (Nancy, France)

Superconducting and hybrid magnetic shields: from comparison between 3D modelling and experiment to the numerical analysis of new shielding configurations

Laura Gozzelino

Michela Fracasso, Samuele Ferracin, Roberto Gerbaldo, Gianluca Ghigo, Francesco Laviano, Andrea Napolitano, Daniele Torsello

> Department of Applied Science and Technology, Politecnico di Torino and INFN Sez. Torino, Torino, Italy

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

- Motivation and starting point
- 3D modelling
- Comparison between experiment and computation results
 - ✓ Axial and transverse field configuration
 - ✓ Different shapes
 - ✓ Superconducting and hybrid (superconducting/ferromagnetic) shields
- Numerical analysis of new hybrid shield configurations
- Conclusions

Motivation and starting point

3D modelling

- Comparison between experiment and computation results
 - \checkmark Axial and transverse field configuration
 - ✓ Different shapes
 - ✓ Superconducting and hybrid (superconducting/ferromagnetic) shields
- Numerical analysis of new hybrid shield configurations
- Conclusions

Low-frequency magnetic fields shielding ...

Hybrid solution: SC-FM superimposed shields

High Temperature Superconductors

Effect of magnetic field orientation

MgB₂ tube Inner radius: 7.0 mm Outer radius: 10.0 mm Height: 17.5 mm

L. Gozzelino et al., *SUST* 32 (2019) 034004

olitecnico

Torino

Choice of sample geometry is crucial to optimize the shielding performance in relation to the field orientation

Motivation and starting point

Superconductor 3D modelling

- Comparison between experiment and computation results
 - \checkmark Axial and transverse field configuration
 - ✓ Different shapes
 - ✓ Superconducting and hybrid (superconducting/ferromagnetic) shields
- Numerical analysis of new hybrid shield configurations
- Conclusions

3D modelling

To model the **superconductor** :

- \overrightarrow{A} -formulation based procedure A.M. Campbell, Supercond. Sci. Technol. 20 (2006) 292. F. Gömöry et al., Supercond. Sci. Technol. 22 (2009) 034017.
- Starting from the virgin state, the magnetic field penetrates monotonically from the surface when H_{appl} increases monotonically
 - \Rightarrow relation between the electric field and the current density $oldsymbol{J}$

$$= J_{c} \tanh\left(-\frac{1}{E_{c}} \cdot \frac{\partial A}{\partial t}\right)$$
$$E_{c} = 1 \times 10^{-4} \text{ V/m}$$

For 3D extension:

- Collinearity between the current density and the local electric field $\partial A_x: \partial A_y: \partial A_z = J_x: J_y: J_z$
- Isotropic J_c

➡

M. Solovyov and F. Gomory, Supercond. Sci. Technol. 32 (2019) 115001

$$\vec{J} = \frac{J_c}{\left|\vec{E}\right|} \left(|E_x| \tanh\left(\frac{E_x}{E_c}\right) \hat{u}_x + |E_y| \tanh\left(\frac{E_y}{E_c}\right) \hat{u}_y + |E_z| \tanh\left(\frac{E_z}{E_c}\right) \hat{u}_z \right)$$

L. Gozzelino - 7th International Workshop on Numerical Modelling of High Temperature Superconductors

3D modelling

$$\vec{\mathbf{J}} = \frac{J_{c}}{|\vec{E}|} \left(|E_{x}| \tanh\left(\frac{E_{x}}{E_{c}}\right) \hat{u}_{x} + |E_{y}| \tanh\left(\frac{E_{y}}{E_{c}}\right) \hat{u}_{y} + |E_{z}| \tanh\left(\frac{E_{z}}{E_{c}}\right) \hat{u}_{z} \right)$$
$$J_{c}(B) = J_{c,0} \left[-\left(\frac{B}{B_{0}}\right)^{\gamma} \right]$$

L. Gozzelino - 7th International Workshop on Numerical Modelling of High Temperature Superconductors

3D modelling

To model the **ferromagnetic material** :

- \vec{A} -formulation
- interpolation of the B-H_{appl} curve measured experimentally

Boundary condition: at a large distance from the shield, the field was assumed constant, equal to $\mu_0 \vec{H}_{app}$

Numerical modelling was implemented by means of the commercial finite-element software COMSOL Multiphysics[®]

L. Gozzelino - 7th International Workshop on Numerical Modelling of High Temperature Superconductors

- Motivation and starting point
- Superconductor 3D modelling
- Comparison between experiment and computation results
 - ✓ Axial and transverse field configuration
 - ✓ Different shapes
 - ✓ Superconducting and hybrid (superconducting/ferromagnetic) shields
- Numerical analysis of new hybrid shield arrangements
- Conclusions

Comparison between experiment-computation results: superconducting tube

Comparison between experiment-computation results:

superconducting + ferromagnetic tubes

Comparison between experiment-computation results: superconducting cup

MgB₂ cup Inner radius: 7.0 mm Outer radius: 10.0 mm Ext. height: 22.5 mm Int. Depth: 18.3 mm

High Temperature Superconductors

GOOD AGREEMENT but...

- calculation can not reproduce the flux jump occurrence
 - ➔ model upgrading is ongoing
- ✤ some discrepancy in **TF** configuration at high fields
 - → cup base roughness

- Motivation and starting point
- 3D modelling
- Comparison between experiment and computation results
 - \checkmark Axial and transverse field configuration
 - ✓ Different shapes
 - ✓ Superconducting and hybrid (superconducting/ferromagnetic) shields

Numerical analysis of new hybrid shield configurations

Conclusions

New shielding arrangements

- Magnetic mitigation solutions in situations (e.g. space) where the space occupied by the shield must be minimized
 - ✓ samples with small aspect ratio (1.5 < AR < 2.5) of height/outer radius

Effect of Fe shield superimposition for different applied field orientation

L. Gozzelino - 7th International Workshop on Numerical Modelling of High Temperature Superconductors

New shielding arrangements

MgB₂ cup

SC inner radius: 7.0 mm SC outer radius: 10.0 mm SC int. Depth: 18.3 mm SC ext. height: 22.5 mm

Fe cup

FM inner radius: 11.5 mm FM outer radius: 14.0 mm Int. depth: 22.5 mm Ext. height: 25.0 mm

$\Delta h = 0$

MgB₂ cup

SC inner radius: 7.0 mm SC outer radius: 10.0 mm SC int. Depth: 18.3 mm SC ext. height: 22.5 mm

Fe cup

FM inner radius: 11.5 mm FM outer radius: 14.0 mm Int. depth: 19.0 mm Ext. height: 21.5 mm

 $\Delta h = -3.5 \text{ mm}$

MgB₂ cup

SC inner radius: 7.0 mm SC outer radius: 10.0 mm SC int. Depth: 18.3 mm SC ext. height: 22.5 mm

Fe cup

FM inner radius: 11.5 mm FM outer radius: 14.0 mm Int. depth: 26.0 mm Ext. height: 28.5 mm

17

 $\Delta h = + 3.5 \text{ mm}$

L. Gozzelino - 7th International Workshop on Numerical Modelling of High Temperature Superconductors

Shielding in axial-field configuration

Shielding in transverse-field configuration

High Temperature Superconductors

Conclusions

- **3D** modelling is crucial to investigate new and more efficient shield configurations
- ***** Numerical procedure based on \vec{A} -formulation
 - Collinearity between local \vec{J} and \vec{E}
 - Isotropic J_c (B)
 - Computation running on a commercial finite element code

Computation outputs well reproduce shielding experimental results obtained with superconducting and hybrid shields

- Numerical simulations guide new shield designs
 - Ferromagnetic cup addition of a superconducting cup-shield

Axial field-configuration

- → low field: ⁽²⁾ superconducting shield
- → high field: [©] hybrid shield

Transverse-field configuration

→ ② hybrid shield in the whole investigate range of field

Other field orientations ? -> see poster M. Fracasso (Session PS2-PM – Tuesday, 17.30-18.30)

Thanks to:

- > Mykola Solovyov and Fedor Gömöry Slovak Academy of Science, Bratislava, Slovakia
- Petre Badica National Institute of Materials Physics, Măgurele, Romania

L. Gozzelino - 7th International Workshop on Numerical Modelling of High Temperature Superconductors

