

UNIVERSITY OF CAMBRIDGE

Modelling the record trapped field by pulsed field magnetisation of a composite bulk MgB2 superconducting ring Vito Cientanni, *Bulk Superconductivity Group, Dept. of Engineering, University of Cambridge*

7th International Workshop on Numerical of High Temperature Superconductors Applications

- Bulk Superconductors are fabricated to 'trap' large fields; in excess of 17 T
- Magnetising currents are 'pinned' by the mixed state of superconductivity
- Larger bulks = greater magnetisation

Introduction Bulk Superconductors

Circulating 'super

- $MgB₂$ is not quite HTS: T_c = 39 K
- Very uniform *Jc*; polycrystalline form
- An important alternative to HTS due to lightweight structure and manufacturability
- *currents' are pinned*
- *within the bulk, resulting*
- *in a trapped magnetic*
- *field.*

(RE)-BCO MgB2

- Hirano et al. achieved a record-high trapped field in 2020
- Earlier studies show split-coil, multiple pulsing, and pulse elongation can enhance trapped field
- Previous record of 1.1 T at 13 K was beaten with 1.61 T at 20 K using PFM
- Our numerical investigation was motivated by the results of Hirano et al. [1]

Motivation Record-High Trapped Field

Sample configurations investigated by Hirano et al.

[1] Article published by Hirano and Fujishiro

IOP Publishing

Supercond. Sci. Technol. 33 (2020) 085002 (10pp)

A record-high trapped field of 1.61 T in MgB₂ bulk comprised of copper plates and soft iron yoke cylinder using pulsed-field magnetization

Tatsuva Hirano D. Yuhei Takahashi, Sora Namba D. Tomovuki Naito D and Hiroyuki Fujishiro

Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan

E-mail: fujishiro@iwate-u.ac.jp and thirano1995@gmail.com

- 1. Accurate replication of geometry & experimental setup
- 2. Simulation of thermomagnetic properties and experimental results
- 3. Extend study for insights and interesting new findings

Motivation Goals of Work

Photo of the original sample holder, used to hold the MgB2 superconducting ring

Modelling Details Formulation

-
- modelled with experimental data
- generate pulse
- sample holder periphery

- Finite Element Method with commercial package COMSOL utilised
- Governing equations use *H-formulation*
	- Applied pulse typical of PFM

Modelling Details Electromagnetic Formulation

Heat Equation ρc_p^p ∂*T* ∂*t* $= \kappa \nabla^2 (T_r - T_{ri})$) + *Q* $Q = E \cdot J$

- Coupled problem of EM and thermal
- Heat equation with conductive loss and boundary conditions

Modelling Details Thermal Considerations

 ρ = mass density, c_p = specific heat, κ = thermal conductivity, *Q* = heat source

Cooling bulk via cold stage modelled through Fourier's law. Constant K was determined through iterative adjustment

 $B | S | G$

- *Jc(B, T)* interpolated from sample data
- Non-linear resistivity modelled via the E-J power law
- *n*-value assumed constant below 39 K

Modelling Details MgB2 Considerations

Critical Current Density $J_c(B, T) = \alpha |1 - \alpha|$ *T Tc*) $2\big)^{\frac{0.5}{0.5}}$ *e* − *^B* $B_o\left(1-\left(\frac{T}{T_c}\right)\right)$ $n =$ $\left\{ \begin{array}{c} 45 \\ 1 \end{array} \right.$ 1 *else B <* 4 T*, T <* 39 K $E = E_{o}$ $\overline{}$ *J*(*B*, *T*) *Jc*) *n* **E-J Power Law**

 $\alpha = J_{co}(B = 0 \text{ T}, T = 10 \text{ K})$, $T_c = 39 \text{ K}, B_o = 0.85 \text{ T}$, E_0 = 1x10⁻⁴ V.m⁻¹

- Applied pulses calibrated to agree with experiment
- FCM of bulk performed to gauge properties and reliability of models

Modelling Results Calibration & FCM Results

Calibrated pulses, illustrating how careful choice of material properties and experimental constants produce excellent agreement

Field Cooled Magnetisation results for the modelled MgB2 sample

- Applied a single magnetic^{1.0} pulse to samples 0.6 0.8
- Graphs from left to right are samples shown <u>ന</u> \checkmark 工 all) [T]
- Magnitude of trapped field quantitatively agrees

Modelling Results Single Pulse Results

SIS UNIVERSITY OF

Modelling Results Double Pulse Results

- Sample pulsed after an initial 1.3 T pulse
- Pre-magnetised state with 0.6 T trapped
- Successfully modelled record breaking trapped field; multi-pulse successfully aids trapped field

Modelling Results Extension Studies: Copper Layers

- Hirano et al. [1] illustrated effect of \angle inserted copper layers
- As layer number increases, MgB₂ decreases and copper layer increases
- The number of layers utilised is hard to vary experimentally but easy with FEM (a)

(a) Single Bulk (b) Composite (c) Composite with yoke

(b) Con *D*site with

N = 3

Modelling Results Extension Studies: Copper Layers

- Effect of layers on pulse modification illustrated
- How trapped field varies with applied field for various layers shown

Effect of layer number on pulse magnitude and rise time

Effect of layer number on maximum trapped field

Modelling Results Extension Studies: Copper Layers

Effect of layer number on maximum trapped field

Layer number versus trapped field and maximum temperature

- Effect of layers on pulse modification illustrated لــــــــا \vdash <u>न</u>
जन्म
- How trapped field varies with applied field for various layers shown <u>ന</u> ىب \leftharpoonup დ $\mathbf{\Omega}$ \checkmark $\mathbf C$ $\mathbf \Phi$ $\mathbf{\Omega}$ $\overline{}$ r $\mathbf \Omega$)

affected by an inserted soft-iron yoke

Sample configurations created by Hirano et al.

Modelling Results Extension Studies: Effect of Yoke
Single Bulk
(b) Composite **(a) Single Bulk (b) Composite (c) Composite with yoke**

Applied field versus trapped and associated max. temperature

Modelling Results Extension Studies: Effect of Yoke

- Large enhanceme nt of applied field
- Yoke significantly enhanced trapped field with 'activation' at 0.76 T

Effect of adding the yoke to the single bulk; trapped field

Applied field versus trapped and associated max. temperature

Modelling Results Extension Studies: Effect of Yoke

Radial field distribution of 'Single bulk' with iron yoke

- With careful calibration, utilisation of experimental data and material constants, excellent agreement of modelling composite MgB2 bulks can be achieved
	- Copper layers effectively retard pulse, but diminish magnitude significantly
	- Optimal layer number was between 3 and 5 to balance maximum trapped field and reduced field penetration
	- Iron yoke significantly enhanced applied field locally
	- Soft-iron yoke magnetisation assisting magnetisation of MgB₂

Conclusions

Thank you for watching **Contact email:**

vc329@cam.ac.uk

Supervisor: Mark Ainslie **PI:** John Durrell

The author would like to thank all of the members of the BSG Cambridge and Department of Physical Science and Materials Engineering, Iwate University for their help in this project, in particular M. Ainslie, H. Fujishiro and K. Takahashi. This project has been supported with many thanks to the funding of the EPSRC DTP and University of Cambridge Engineering Department.