

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd-23rd June 2021, Virtual (Nancy, France)

https://htsmod2020.sciencesconf.org/

Field-Circuit Coupled Simulation of Magnetothermal Dynamics in an HTS Solenoid

L. Bortot^{1,2}, M. Mentink², A. Verweij², S. Schöps¹

Special Thanks: I. Cortes Garcia, H. De Gersem, M. Maciejewski

This work is supported by:

(*) Graduate School CE within the Centre for Computational Engineering at Technische Universität Darmstadt. (**) The Gentner program of the German Federal Ministry of Education and Research (grant no. 05E12CHA).

INTRODUCTION

High temperature superconductors (HTS)

- Oxides (CuO2) doping with La, Y-Ga-Ba etc.
- Higher critical temperature and coercive field with
 respect to low-temperature superconductors (LTS)

Figure: schematics of a copper-coated ReBCO tape

Quench

Local loss of the superconducting state

High energy-density \rightarrow potentially irreversible effects! Mitigation: artificial resistive zone increase \rightarrow dilution of the Ohmic loss density

Motivation: Simulation of transient effects in circuits of accelerator magnets Field-Circuit Coupled Systems!

MATHEMATICAL FORMULATION

Magnet domain decomposition

- $\Omega_{\rm H} = \Omega_{\rm H,s} \cup \Omega_{\rm H,c}$ active region \rightarrow Coils:
 - $\Omega_{\rm H,s}$ superconductors ($\sigma \rightarrow +\infty$)
- $\Omega_{\rm H,c}$ normal conductors ٠

 $\Omega_A = \Omega_{A,c} \cup \Omega_{A,i}$ passive region \rightarrow Iron yoke, air region:

- $\Omega_{A,c}$ normal conductors ٠
- $\Omega_{A,i}$ insulators $(\rho \rightarrow +\infty)$ ٠

Field equations [*]

 $\nabla \times \rho \nabla \times \mathbf{H} + \mu \partial_t \mathbf{H} + \nabla \times \mathbf{\chi} \, \mathbf{u}_s = 0$ **H** formulation in $\Omega_{\rm H}$ $\nabla \times \mathbf{v} \, \nabla \times \mathbf{A}^{\star} + \, \sigma \partial_{\mathrm{t}} \mathbf{A}^{\star} = \mathbf{0}$ \mathbf{A}^{\star} formulation in $\Omega_{\mathbf{A}}$ $\rho_{\rm m} C_{\rm p} \partial_{\rm t} T - \nabla \cdot \mathbf{k} \nabla T - \mathbf{J} \cdot \rho \mathbf{J} = 0$ $\int_{\Omega_{\rm H}} \boldsymbol{\chi} \cdot \boldsymbol{\nabla} \times \mathbf{H} \mathrm{d}\Omega = \mathrm{i}_{\mathrm{s}}$ Current constraint

Heat balance equation in Ω

 $\boldsymbol{\chi} = -\nabla \boldsymbol{\xi}, \qquad \boldsymbol{\xi} : \nabla \cdot \boldsymbol{\sigma} \nabla \boldsymbol{\xi} = 0$

Voltage distribution function

[*] Bortot, L., et al. "A Coupled A–H Formulation for Magneto-Thermal Transients in High-Temperature Superconducting Magnets." IEEE Transactions on Applied Superconductivity 30.5 (2020): 1-11.

Figure: General representation of the computational domain

DISCRETE EQUATIONS

Discretization functions

- Edge elements for H, A^* (1st and 2nd order)
- Nodal elements for χ , T (1st order)

Circuit interface

- External circuit connected via electric ports
- FEM model \rightarrow one-port component with impedance $\rm Z_{FEM}:~u_s=\rm Z_{FEM}~i_s$

Linearized field-circuit coupling interface for solid conductors

NUMERICAL EXAMPLE (1/2)

HTS solenoid protected by heater strips: 2D axisymmetric model and circuitry

Figure: Rendering of the HTS solenoid. Part of the insulation is removed for illustration purposes.

Figure: Domain decomposition

NUMERICAL EXAMPLE (2/2)

Electrical layout

Solenoid lumped-parameter representation

Optimized Schwarz transmission condition for field-circuit coupled simulations with the waveform relaxation algorithm [*]

Observations:

 L_m g

 $\&L_{qh}$

Ξ±`

 $\Delta u_{\rm qh}$

 $\mathrm{R}_{\mathbf{q}\mathbf{h}}$

Μ

 $R_{crow} + R_m$ discharge the solenoid current R_m determined by the quench

(*) Garcia, Idoia Cortes, et al. "Optimized field/circuit coupling for the simulation of quenches in superconducting magnets." IEEE Journal on Multiscale and Multiphysics Computational Techniques 2 (2017): 97-104.

(A) NUMERICAL RESULTS (1/3)

Circuital currents

Current decay in the coil (left) and current discharge in the heater strips (right)

Peak temperature

Adiabatic hotspot temperature in the coil, as a function of the quench detection time

Temperature distribution in the superconducting coil, as a function of time

NUMERICAL RESULTS (3/3)

Definitions, at iteration *i*

- x_i signal (current in the magnet)
- $\varepsilon_{abs} \ \varepsilon_{rel}$ absolute & relative error
- ε_i convergence error
- F_{conv} convergence flag

$$\varepsilon_{i} = \max\left(\frac{|x_{i} - x_{i-1}|}{\varepsilon_{abs} + |x_{i}|\varepsilon_{rel}}\right), \quad i \ge 2$$
$$F_{conv} = \begin{cases} 0, & \text{if } i < 2\\ \varepsilon_{i} < 1, & \text{if } i \ge 2 \end{cases}$$

Quench as abrupt change in resistivity

- \rightarrow High influence on the solenoid current
- → More iterations needed!

CONCLUSIONS AND OUTLOOK

Conclusions

- A-H field formulation for HTS-based accelerator magnets
- Field-circuit coupling interface based on ٠ solid conductor model
- Co-simulation of HTS magnets with the waveform relaxation scheme

Outlook

٠

- Minimization of the quench detection time ٠
- Protection of HTS magnets in case of a quench ٠
- Dynamics of HTS magnets in accelerator circuits ٠

10

3 2

Figure: Ohmic loss distribution in a HTS solenoid

Figure: magnetic flux density in the Feather-M2 insert dipole magnet

Thank you for your attention!

Contact: lorenzo.bortot@cern.ch

0.5