

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd–23rd June 2021, Virtual (Nancy, France)

<https://htsmod2020.sciencesconf.org/>

Field-Circuit Coupled Simulation of Magnetothermal Dynamics in an HTS Solenoid

L. Bortot^{1,2}, M. Mentink², A. Verweij², S. Schöps¹

Special Thanks: I. Cortes Garcia, H. De Gersem, M. Maciejewski

This work is supported by:

(*) Graduate School CE within the Centre for Computational Engineering at Technische Universität Darmstadt. (**) The Gentner program of the German Federal Ministry of Education and Research (grant no. 05E12CHA).

INTRODUCTION

High temperature superconductors (HTS)

- Oxides (CuO2) doping with La, Y-Ga-Ba etc.
- Higher critical temperature and coercive field with respect to low-temperature superconductors (LTS)

Figure: schematics of a copper-coated ReBCO tape

Quench

Local loss of the superconducting state

High energy-density \rightarrow potentially irreversible effects! Mitigation: artificial resistive zone increase \rightarrow dilution of the Ohmic loss density

Motivation: Simulation of transient effects in circuits of accelerator magnets Field-Circuit Coupled Systems!

MATHEMATICAL FORMULATION

Magnet domain decomposition

- $\Omega_{\rm H} = \Omega_{\rm H,s} \cup \Omega_{\rm H,c}$ active region \rightarrow Coils:
	- $\Omega_{\rm H,s}$ superconductors $(\sigma \rightarrow +\infty)$
- $\Omega_{H,c}$ normal conductors

 $\Omega_{\rm A} = \Omega_{\rm A,c} \cup \Omega_{\rm A,i}$ passive region \rightarrow Iron yoke, air region:

- $\Omega_{A,c}$ normal conductors
- $\Omega_{A,i}$ insulators $(\rho \to +\infty)$

Field equations [⋆**]**

 $\nabla \times \rho \nabla \times H + \mu \partial_t H + \nabla \times \chi u_s = 0$ H formulation in Ω_H $\nabla \times \mathbf{v} \nabla \times \mathbf{A}^* + \sigma \partial_t \mathbf{A}^* = 0$ **A** * formulation in Ω_A $\rho_{\rm m} C_{\rm p} \partial_{\rm t} T - \nabla \cdot k \nabla T - J \cdot \rho J = 0$ Heat balance equation in Ω $\int_{\Omega_{\rm H}} \chi \cdot \nabla \times \text{Hd}\Omega = \text{i}_{\rm s}$ Current constraint

Figure: General representation of the computational domain

[*] Bortot, L., et al. "A Coupled A–H Formulation for Magneto-Thermal Transients in High-Temperature Superconducting Magnets." IEEE Transactions on Applied Superconductivity 30.5 (2020): 1-11.

DISCRETE EQUATIONS

Discretization functions

- Edge elements for H , A^* (1st and 2nd order)
- Nodal elements for χ , T (1st order)

Circuit interface

- External circuit connected via electric ports
- FEM model \rightarrow one-port component with impedance $Z_{FEM} : u_s = Z_{FEM} i_s$

Linearized field-circuit coupling interface for solid conductors

NUMERICAL EXAMPLE (1/2)

HTS solenoid protected by heater strips: 2D axisymmetric model and circuitry

Figure: Rendering of the HTS solenoid. Part of the insulation is removed for illustration purposes.

Figure: Domain decomposition

NUMERICAL EXAMPLE (2/2)

Electrical layout

Solenoid lumped-parameter representation

Optimized Schwarz transmission condition for field-circuit coupled simulations with the waveform relaxation algorithm [⋆]

Observations:

 L_m

 $\bigotimes \mathrm{L_{qh}}$

 $|\mp\rangle$

 $\Delta u_{\rm gh}$

 $\rm R_{\rm qh}$

 \mathbf{M}

 $R_{\rm crown} + R_{\rm m}$ discharge the solenoid current R_m determined by the quench

(⋆) Garcia, Idoia Cortes, et al. "Optimized field/circuit coupling for the simulation of quenches in superconducting magnets." IEEE Journal on Multiscale and Multiphysics Computational Techniques 2 (2017): 97-104.

(A) NUMERICAL RESULTS (1/3)

Circuital currents Peak temperature

Current decay in the coil (left) and current discharge in the heater strips (right)

Adiabatic hotspot temperature in the coil, as a function of the quench detection time

Temperature distribution in the superconducting coil, as a function of time

NUMERICAL RESULTS (3/3)

Definitions, at iteration

- x_i signal (current in the magnet)
- $\varepsilon_{abs} \varepsilon_{rel}$ absolute & relative error
- \cdot ε_i convergence error
- \cdot F_{conv} convergence flag

$$
\varepsilon_i = \max\left(\frac{|x_i - x_{i-1}|}{\varepsilon_{abs} + |x_i|\varepsilon_{rel}}\right), \ \ i \ge 2
$$

$$
F_{conv} = \begin{cases} 0, & \text{if } i < 2 \\ \varepsilon_i < 1, \quad \text{if } i \ge 2 \end{cases}
$$

Enforcement of at least three iterations per time window

Quench as abrupt change in resistivity

- \cdot \rightarrow High influence on the solenoid current
- \rightarrow More iterations needed!

CONCLUSIONS AND OUTLOOK

Conclusions

- A-H field formulation for HTS-based accelerator magnets
- Field-circuit coupling interface based on solid conductor model
- Co-simulation of HTS magnets with the waveform relaxation scheme

Outlook

- Minimization of the quench detection time
- Protection of HTS magnets in case of a quench
- Dynamics of HTS magnets in accelerator circuits

q

 $\overline{\mathbf{3}}$ $|2\rangle$ $\mathbf{1}$

Figure: Ohmic loss distribution in a HTS solenoid

 0.5

Figure: magnetic flux density in the Feather-M2 insert dipole magnet

Thank you for your attention!

Contact: lorenzo.bortot@cern.ch

