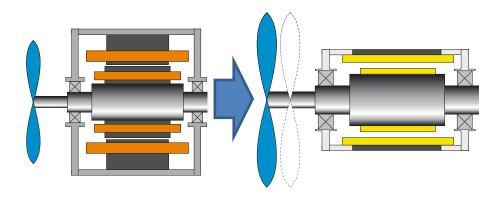
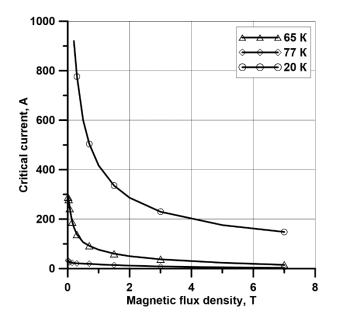


Moscow aviation institute (national research university) Department of electrical machines and power electronics


Modeling and experimental research of machine with annular HTS winding

K Kovalev <u>N Ivanov</u> V Podguzov S Zanegin

The reported study was funded by RFBR according to the research project № 17-29-10009


Increasing of specific and volume power is possible with application of HTS field and armature windings in electrical machines.

Conventional machine

Fully HTS machine

Field dependency of critical current does not allow to obtain high magnetic fields for 77 K. Decreasing of the temperature could solve this problem. The most perspective way is to go to 20 K.

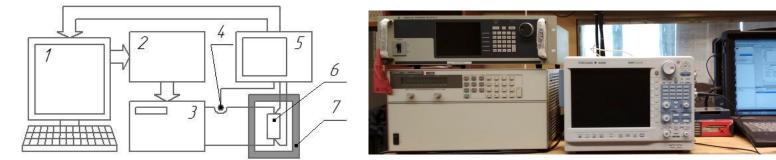
Field dependency of critical current for SuperOx tape

Recent developed machines

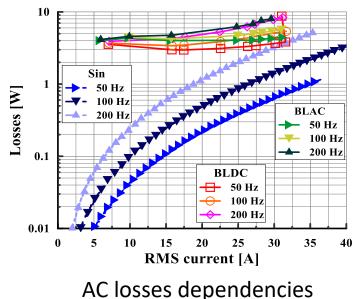
We have already developed several experimental devices in recent years. It gave us opportunity to clarify our analytical techniques which could be used for further calculations. Today we are ready to go to the high power.

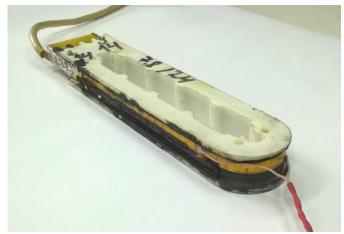
Fully HTS machine

Parameters of 10 kW prototype			
Parameter	Value		
Nominal output power, kW	10		
Rotational speed	2500		
Field winding current, A	40		
Armature winding current, A	20		
Armature winding type	Teeth-coils		
Operating temperature, K	77		
Electrical frequency, Hz	125		


Machine with PM and HTS winding

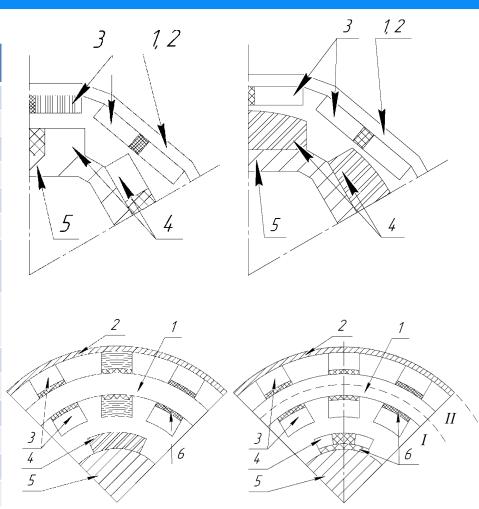
Parameters of 10 kW prototype				
Parameter	Value			
Nominal output power, kW	10			
Rotational speed	2500			
Field winding current, A	40			
Armature winding current, A	20			
Armature winding type	Annular			
Operating temperature, K	77			
Electrical frequency, Hz	125			




AC losses studies

Experimental ant theoretical investigation on AC losses were done during projects. These include data about losses for supply currents with different amplitudes, frequencies and waveforms.

1 – PC, 2 – extension socket, 3 – Current source, 4 – current sensor, 5- scopecorder YOKOGAWA, 6 – coil, 7 – cryostat. Test bench for experimental research of HTS coils


Small-scale experimental prototype of the HTS coil

Possible schemes of machines

NՉ	Excitation	Armature	Magnetic circuit	Magnetic shield
1	PM	Teeth	core-less	Ferromagnetic
2	PM	Teeth	core-less	Electromagnetic
3	PM	Teeth	2 magnetic cores	No
4	PM	Teeth	Full	No
5	PM	Annular	2 magnetic cores	Ferromagnetic
6	PM	Annular	2 magnetic cores	Electromagnetic
7	PM	Annular	2 magnetic cores	Ferromagnetic
			and teeth	
8	PM	Annular	2 magnetic cores	Electromagnetic
			and teeth	
9	Field winding	<mark>Teeth</mark>	<mark>core-less</mark>	Ferromagnetic
10	Field winding	Teeth	core-less	Electromagnetic
11	Field winding	Teeth	2 magnetic cores	No
12	Field winding	Teeth	Full	No
13	Field winding	Annular	2 magnetic cores	Ferromagnetic
14	Field winding	<mark>Annular</mark>	2 magnetic cores	Electromagnetic

1 – stator magnetic core, 2 – magnetic shield,
3 – AC HTS winding, 4 – DC HTS winding, 5 –
rotor magnetic core, 6 - support

Thank you for attention

Moscow aviation institute (national research university) Department of electrical machines and power electronics

n.s.ivanov88@gmail.com – N. Ivanov