

Design of a superconducting magnetic shield closed on both ends for a high-sensitivity particle detector

Kevin HOGAN, Philippe VANDERBEMDEN, Benoît VANDERHEYDEN

Montefiore Research Unit, University of Liege, Belgium

Alexey RADOVINSKY, Joe MINERVINI.

Plasma Science and Fusion Center, M.I.T., Cambridge, Massachusets, USA

Montefiore Research Unit, University of Liège, Belgium

Montefiore Research Unit, University of Liège, Belgium

- In collaboration with the Plasma Science and Fusion Center of the M.I.T.
- The ABRACADABRA project aims at detecting axions.
- Axions are **hypothetical elementary particles**, candidates to explain the particle nature of dark matter.
- Experiment based on the principle that axions interact with static magnetic fields (and may change Maxwell's equations)

A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus

- Generation of a DC azimuthal magnetic field **B**₀
- The interaction 'B₀ axion' can be treated as an effective oscillating current J_{eff} flowing along B₀
- This current generates a real magnetic field B_{ind} which can be measured experimentally

Toroidal coil

12 cm

- A pick-up coil inductively coupled with a SQUID is located inside the bore of the tore
- The whole system is cooled down to 1.2 K
- Environmental magnetic noise must be below the current shot noise of the SQUID (i.e. **0.01 fT/** √Hz for *f* > 50 Hz)

Efficient

Pick-up coil

Questions of this work

- Magnetic shield closed on both ends, aspect ratio ~ 1
- Conventional ferromagnetic material should be avoided
- Only **Type-I superconductors** can be considered
- Shielding ensured by macroscopic current loops

✓ What is the most efficient geometry of the shield ?

- 'OPERA' modelling software : Linear *E-J* relationship
- 'ELEKTRA' module for analysis of eddy currents
- Type-I superconductor ~ conductor with $\sigma = 10^{30}$ S/m

✓ What are the modelling possibilities of 'OPERA' ?

Methodology

- Study magnetic shields of well-known, axisymmetric geometries
 - Compare :

1

2

Analytical
$$B(z)$$
OPERA
Ohm, $\sigma = 10^{30}$ S/mGetDP [2D]
London Equations

Investigate magnetic shields of various closed geometries adapted to the experiment

$$B_{\rm app} = 1 \text{ mT} \implies B_{\rm in} \implies SF = \frac{B_{\rm app}}{B_{\rm in}}$$

J. R. Claycomb and J. H. Miller Jr., *Rev. Sci. Instrum. vol. 70, pp. 4562-4598* (1999). GetDP: A General Environment for the Treatment of Discrete Problems, [Online]. <u>http://getdep.info</u>

Semi-closed tube with aspect ratio ~ 1

Open tube with aspect ratio ~ 10

- OPERA and GetDP results are coherent with analytical results.
- OPERA should not be used for handling SF > 10⁸ in this analysis

Shields closed on both ends for the application

Superconducting swiss-roll with 2 caps

2

- SF too low (≤ 4.1)
- The swiss roll shields itself
- Shielding mainly provided by the caps

Shields closed on both ends : axial field

2 Closed tube with one cap : influence of a hole

2 2 closed tubes head-to-foot : Transverse field

- Much smaller SF than in the axial field,
- Configuration with the highest SF anyway

(OPERA)

Summary and conclusions

'ABRACADABRA' : final prototype

- Shield made of 2 closed tubes, spin-coated with tin ($T_c = 3.72$ K), welded shut
- The experiments demonstrated the capabilities of thebroadband axion search ABRACADABRA-10 cm
- No evidence of an axion signal in the mass range $3.1 \times 10^{-10} 8.3 \times 10^{-9} \text{ eV}$

 $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$

J. L. Ouellet et al. *Phys. Rev. Lett.* 122, 121802 (2019)

Acknowledgements

Fonds de la recherche scientifique (FRS-FNRS) Fonds pour la formation à la recherche dans l'industrie et l'agriculture (FRIA), Belgium

University of Liege Belgium

Kevin HOGAN Benoît VANDERHEYDEN

Plasma Science and Fusion Center Massachusetts Institute of Technology Alexey RADOVINSKY Joe MINERVINI Makoto TAKAYASU