

The Campbell model as a tool to introduce students to AC loss calculation in superconductors

Francesco Grilli, Enrico Rizzo

Easy understanding of physics

Easy understanding of physics \rightarrow Critical state model

- Easy understanding of physics \rightarrow Critical state model
- **Speed**

- Easy understanding of physics \rightarrow Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less

- Easy understanding of physics \rightarrow Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less
- Open-source (FreeFEM)

- Easy understanding of physics \rightarrow Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less
- \blacksquare Open-source (FreeFEM) \rightarrow No license issues, users can modify code

- Easy understanding of physics \rightarrow Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less
- \blacksquare Open-source (FreeFEM) \rightarrow No license issues, users can modify code
- Portability

- Easy understanding of physics \rightarrow Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less
- \blacksquare Open-source (FreeFEM) \rightarrow No license issues, users can modify code
- **Portability** \rightarrow **Students can run model on their laptops**

State variable: magnetic vector potential *A*

- State variable: magnetic vector potential A
- **Current density** $(\pm J_c)$ given by the sign of A

$$
\nabla^2 A = -\mu_0 J_c \text{erf}(-A/A_r) \tag{1}
$$

- State variable: magnetic vector potential *A*
- **Current density** $(\pm J_c)$ given by the sign of A

$$
\nabla^2 A = -\mu_0 J_c \text{erf}(-A/A_r) \tag{1}
$$

Current density $(\pm J_c)$ given by the sign of A

$$
\nabla^2 A = -\mu_0 J_c \text{erf}(-A/A_r) \tag{1}
$$

For certain problems, cyclic AC losses can be computed from *A* at the peak

$$
Q = -4 \int_{\Omega} J_{\rm p} A_{\rm p} d\Omega \tag{2}
$$

Magnetization of a round wire (in 2D)

Magnetic field B_a obtained with boundary condition $A = -B_a x$ on the outer domain

Magnetic field and current density distributions

Exercise 1

Verify analytical expressions for AC losses of a round wire

Exercise 2

For a fixed field amplitude, modify the aspect ratio of the ellipse (same cross section)

Exercise 3

For a fixed field amplitude, change the field direction

Exercises 4: transport current

Verify Norris's formula (results independent of aspect ratio)

Further: stack of tapes

Current density distributions for the magnetization (left) and transport (right) cases. Each tape behaves differently, influence of separation, etc.

TIXI Karlsruhe Institute of Technology

Conclusion

Limitations

Limitations

Static simulation, no CSM dynamics

Т Karlsruhe Institute of Technology

Conclusion

Limitations

- Static simulation, no CSM dynamics
- Simple cases (no current + field, current constraints, etc.)

- **Limitations**
	- Static simulation, no CSM dynamics
	- Simple cases (no current + field, current constraints, etc.)
- **Advantages**

- **Limitations**
	- Static simulation, no CSM dynamics
	- Simple cases (no current + field, current constraints, etc.)
- **Advantages**
	- Easy to implement & run

- **Limitations**
	- Static simulation, no CSM dynamics
	- Simple cases (no current + field, current constraints, etc.)
- **Advantages**
	- Easy to implement & run
	- Each student can run different cases \rightarrow engagement

- **Limitations**
	- Static simulation, no CSM dynamics
	- Simple cases (no current + field, current constraints, etc.)
- **Advantages**
	- Easy to implement & run
	- Each student can run different cases \rightarrow engagement
	- Students can grasp some important aspects of real applications

Solenoids & power cables

More details in this publication

IOP Publishing

Eur. J. Phys. 41 (2020) 045203 (16pp)

European Journal of Physics

https://doi.org/10.1088/1361-6404/ab90dc

A numerical model to introduce students to AC loss calculation in superconductors