

The Campbell model as a tool to introduce students to AC loss calculation in superconductors

Francesco Grilli, Enrico Rizzo

Easy understanding of physics

■ Easy understanding of physics → Critical state model

■ Easy understanding of physics → Critical state model

Speed

- Easy understanding of physics → Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less

- Easy understanding of physics → Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less
- Open-source (FreeFEM)

- Easy understanding of physics → Critical state model
- Speed \rightarrow A 2D problem should run in 1 minute or less
- Open-source (FreeFEM) \rightarrow No license issues, users can modify code

- Easy understanding of physics → Critical state model
- \blacksquare Speed \rightarrow A 2D problem should run in 1 minute or less
- Open-source (FreeFEM) \rightarrow No license issues, users can modify code
- Portability

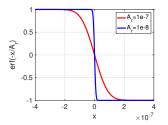
- Easy understanding of physics → Critical state model
- \blacksquare Speed \rightarrow A 2D problem should run in 1 minute or less
- Open-source (FreeFEM) \rightarrow No license issues, users can modify code
- \blacksquare Portability \rightarrow Students can run model on their laptops

State variable: magnetic vector potential A

- State variable: magnetic vector potential A
- Current density $(\pm J_c)$ given by the sign of A

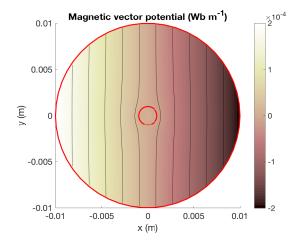
$$\nabla^2 A = -\mu_0 J_c \operatorname{erf}(-A/A_r) \tag{1}$$

- State variable: magnetic vector potential A
- Current density $(\pm J_c)$ given by the sign of A


$$\nabla^2 A = -\mu_0 J_{\rm c} {\rm erf}(-A/A_{\rm r}) \tag{1}$$

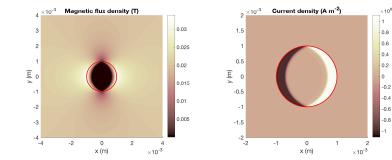
- State variable: magnetic vector potential A
- Current density (±J_c) given by the sign of A

$$\nabla^2 A = -\mu_0 J_{\rm c} {\rm erf}(-A/A_{\rm r}) \tag{1}$$



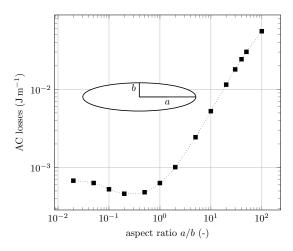
For certain problems, cyclic AC losses can be computed from A at the peak

$$Q = -4 \int_{\Omega} J_{\rm p} A_{\rm p} d\Omega \tag{2}$$

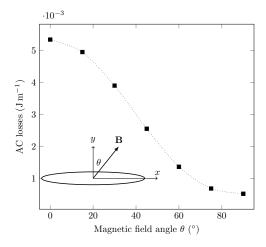

Magnetization of a round wire (in 2D)

Magnetic field B_a obtained with boundary condition $A = -B_a x$ on the outer domain

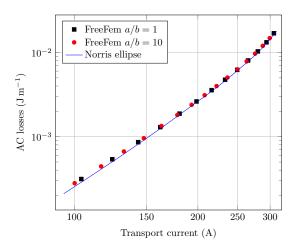

Magnetic field and current density distributions


Exercise 1

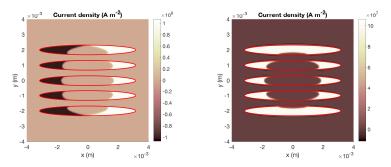
Verify analytical expressions for AC losses of a round wire


Exercise 2

For a fixed field amplitude, modify the aspect ratio of the ellipse (same cross section)


Exercise 3

For a fixed field amplitude, change the field direction


Exercises 4: transport current

Verify Norris's formula (results independent of aspect ratio)

Further: stack of tapes

Current density distributions for the magnetization (left) and transport (right) cases. Each tape behaves differently, influence of separation, etc.

Limitations

Limitations

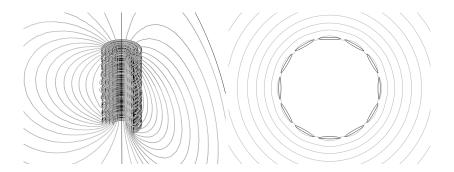
Static simulation, no CSM dynamics

Limitations

- Static simulation, no CSM dynamics
- Simple cases (no current + field, current constraints, etc.)

- Limitations
 - Static simulation, no CSM dynamics
 - Simple cases (no current + field, current constraints, etc.)
- Advantages

- Limitations
 - Static simulation, no CSM dynamics
 - Simple cases (no current + field, current constraints, etc.)
- Advantages
 - Easy to implement & run


- Limitations
 - Static simulation, no CSM dynamics
 - Simple cases (no current + field, current constraints, etc.)
- Advantages
 - Easy to implement & run
 - Each student can run different cases \rightarrow engagement

- Limitations
 - Static simulation, no CSM dynamics
 - Simple cases (no current + field, current constraints, etc.)
- Advantages
 - Easy to implement & run
 - \blacksquare Each student can run different cases \rightarrow engagement
 - Students can grasp some important aspects of real applications

Solenoids & power cables

IOP Publishing

Eur. J. Phys. 41 (2020) 045203 (16pp)

European Journal of Physics

https://doi.org/10.1088/1361-6404/ab90dc

A numerical model to introduce students to AC loss calculation in superconductors