A new E-field finite element formulation for the numerical modelling of high temperature superconductors

<u>Ruben Otin¹, Shafa Aria¹, Zhang Heng¹, Aleksander Dubas¹, Andrew Davis¹, and Frank Schoofs¹</u> ¹UK Atomic Energy Authority - Culham Science Centre, OX14 3DB, Oxfordshire, United Kingdom

Features:

- Electric field is the main unknown, which allows the direct calculation of the induced eddy currents and other magnitudes of interest (e.g. Joule heating) without resorting to derivatives.
- It does not require the addition of extra unknowns (e.g. Lagrange multipliers or scalar potentials) to be stable.
- It can account for capacitive and inductive effects simultaneously, even at low frequencies.
- Same formulation can be used at low and high frequencies.
- It uses 1st order nodal elements enriched with inner and surface bubbles (easier interpolation in multiphysics problems).
- Iterative solver friendly (resultant matrix is well conditioned and it can be solved easily with lightly preconditioned iterative solvers).

Formulation:

Find $\mathbf{E}_h \in U_h$ such that $\forall \mathbf{V}_h \in U_h$ it is satisfied:

$$(L(\nabla \times \mathbf{E}_{h}), \mu^{-1}L(\nabla \times \mathbf{V}_{h})) + (\hat{L}(\nabla \cdot \varepsilon \mathbf{E}_{h}), (\mu \varepsilon^{2})^{-1}\hat{L}(\nabla \cdot \varepsilon \mathbf{V}_{h})) - \omega^{2}(\varepsilon \mathbf{E}_{h}, \mathbf{V}_{h})_{\Omega} + \mathbf{R}.\mathbf{B}.\mathbf{C}. + h^{2}\mathbf{S}_{h} = j\omega(\mathbf{J}, \mathbf{V}_{h})_{\Omega}$$

where:

 U_h is the functional space composed of 1st order nodal elements P_1 enriched with elemental and surface bubbles [1]

 $\mathbf{R}.\mathbf{B}.\mathbf{C}$ are the boundary conditions as given in $\mathbf{S}_{\mathbf{h}}$ is the stabilization factor: ($\nabla \times \mathbf{E}_{h}, \mu^{-1} \nabla$ $L(\cdot)$ and $\hat{L}(\cdot)$ are the L2 projections defined as:

> $(L(\nabla \times \mathbf{u}), \mathbf{q}) = (\nabla \times$ $(\hat{L}(\nabla \cdot \varepsilon \mathbf{u}), q) = (\varepsilon \nabla \mathbf{u})$

JK Atomic Energy I Authority

$$\begin{array}{l} \text{n} [2] \\ \times \mathbf{V}_h) + (\nabla \cdot \varepsilon \mathbf{E}_h, (\mu \varepsilon^2)^{-1} \nabla \cdot \varepsilon \mathbf{V}_h) \\ \vdots \\ \times \mathbf{u}, \mathbf{q}) \quad \forall \mathbf{q} \in (P_1)^3 \\ \mathbf{u}, q) \quad \forall q \in P_1. \end{array}$$

H. Duan, P. Lin, and R.C.E Tan, "Solving a Maxwell interface problem by a local L2 projected C0 finite element method". Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. 2015. R. Otin, "ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain," Computer Physics Communications, vol. 184 (11), 2013.

7th International Workshop on Numerical Modelling of **High-Temperature** Superconductors 22nd-23rd June 2021

E-mail: ruben.otin@ukaea.uk Web : https://ruben-otin.blogspot.co.uk/