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Background

Permanent magnets (PMs) create highly inhomogeneous magnetic fields and are
present in devices such as the high-temperature superconducting (HTS) dynamo.

Widely available HTS coated-conductor tapes exhibit typical n-values of 20 - 60 and
an angular magnetic field dependence on the critical current, I.(B, 6).

Problem Geometry
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* The Brandt analytical model poorly describes such devices,
assuming a homogeneous magnetic field, operation within

the Bean limit (n = o) and a constant critical current. HIASetar

In this work, a finite-element model is constructed to describe
the interaction between a coated-conductor HTS tape and a
permanent magnet, which is the basis of an HTS dynamo,
using COMSOL Multiphysics and measured data from
commercial tapes.

Flux gap

Modelling Methodology

* 2D segregated H-formulation model in x-y plane as in [1, 2], comprising a
magnetostatic PM model and a time-dependent H-formulation model of the HTS
tape. PM movement, to vary the flux gap, is mimicked via a translation operator
and appropriate boundary conditions.

¢ The models are coupled via a Dirichlet condition by applying a magnetic field
Hy = Hgyt + Hgeip on the boundary of the HTS model, where:

* H,, is the field from the PM model at the tape position.
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* Hgp = ;ffﬂ J, === =22 dx dy, where Q is the tape sub-domain.
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¢ The HTS tape sub-domain uses two logarithmic meshes for greater clarity at the

tape centre and edges:
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Governing equations:
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Flux Evolution with Permanent Magnet Approach

* When a PM is positioned perpendicularly to an HTS tape of width 2a, flux penetrates the tape starting from the sides. A shielding current flows

around the edges, and the central region remains flux free due to shielding effects.

* Ford < dpep the tape remains saturated, however I.(B, 0) is suppressed as the field strength at the tape increases.

d=50mm>» dpey d=30mm> dpeyy, d=19mm = dpey; d=135mm = dpep, d=9mMm < dpey,

As the flux gap, d, is decreased, flux penetrates further into the tape until d = dpen, the threshold value at which the flux fully penetrates the
tape. At dpp, the tape saturates to the critical current density, with a small current reversal region in the centre.
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Defining Full Field Penetration of Tape

In addition to d,.p, the largest flux gap at which there is no region within the tape
with B = 0, an estimate of the field penetration can be made by examining the
current flowing within the HTS stator.

Letl; = [f /.| dQ and consider a tape with a field dependent I.(B, 6). As the
magnet approaches the stator, I, increases as the current flows in more of the tape
until it reaches a maximum. At lower flux gaps, I.(B, 6) is suppressed and I}, is
reduced. Thus we can define

dpen,1 = argmaxy [[,l],] - dQ.
For a tape with a constant I the physics is different. As the magnet approaches the

tape, the current reversal zone becomes increasingly narrower and I, is asymptotic to
I instead of exhibiting a maximum.

For the I.(B, 6) model with the parameters in the figure caption, dpen=13.5(1) mm
and dpep, 1 = 19.0(1) mm. These numbers don’t align as there is a trade-off between
the increase in I, from the current reversal zone narrowing and the decrease from
1.(B, 0) being suppressed across the whole tape.

300 T T T
250 L dpen=12.2(1) mm |
icz dpen,l =
&) 19.0(1) mm
3 |
- 200 B
=
:37 dpen=13.5(1) mm
150 |- —— Field dependent model 1
Field independent model
--- 1. (B, 0) reference line
100 b s 283.A rei'}cmucu: line ’ ) ‘
0 10 20 30 40 50
Flux Gap (mm)

Surface integrals of absolute current across the HTS tape as a function
of flux gap using a 12 mm x 10 um HTS stator and a 6 mm x 12 mm N52
grade PM, with the flux gap reduced from 50 mm to 0.5 mm at a rate
of 0.5 mm/s. The model was run using field dependent I.(B, ) data
with n = 20, as well as using a constant /, of 283 A with n = 150.
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