Modelling Interactions Between HTS Tapes and Permanent Magnets

Ross Taylor 1, 2, Mark Ainslie 3, Hubertus Weijers 1, Chris Bumby 1, 2

¹ Robinson Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand (email: ross.taylor@vuw.ac.nz)

² MacDiarmid Institute, Victoria University of Wellington, Wellington 6140, New Zealand

³ Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Paihau—Robinson Research Institute

Sheet current

Background

- Permanent magnets (PMs) create highly inhomogeneous magnetic fields and are
 present in devices such as the high-temperature superconducting (HTS) dynamo.
- Widely available HTS coated-conductor tapes exhibit typical n-values of 20 60 and an angular magnetic field dependence on the critical current, $I_c(B, \theta)$.
- The Brandt analytical model poorly describes such devices, assuming a homogeneous magnetic field, operation within the Bean limit (n → ∞) and a constant critical current.

 $\begin{array}{c|c} Problem Geometry \\ \hline & \mathcal{Y} \\ z & & \text{HTS stator} \\ \hline \\ \Omega & & & & & \\ \end{array}$

In this work, a finite-element model is constructed to describe the interaction between a coated-conductor HTS tape and a permanent magnet, which is the basis of an HTS dynamo, using COMSOL Multiphysics and measured data from commercial tapes.

Modelling Methodology

2D segregated **H**-formulation model in x-y plane as in [1, 2], comprising a magnetostatic PM model and a time-dependent **H**-formulation model of the HTS tape. PM movement, to vary the flux gap, is mimicked via a translation operator and appropriate boundary conditions.

- The models are coupled via a Dirichlet condition by applying a magnetic field $H_0 = H_{ext} + H_{self}$ on the boundary of the HTS model, where:
- *H_{ext}* is the field from the PM model at the tape position.

References:

- $H_{self} = \frac{1}{2\pi} \iint_{\Omega} J_z \frac{-(y_0 y) \hat{x} + (x_0 x) \hat{y}}{(x_0 x)^2 + (y_0 y)^2} dx dy$, where Ω is the tape sub-domain. • The HTS tape sub-domain uses two logarithmic meshes for greater clarity at the
- The HTS tape sub-domain uses two logarithmic meshes for greater clarity at the tape centre and edges:

Flux Evolution with Permanent Magnet Approach

- When a PM is positioned perpendicularly to an HTS tape of width 2*a*, flux penetrates the tape starting from the sides. A shielding current flows around the edges, and the central region remains flux free due to shielding effects.
- As the flux gap, d, is decreased, flux penetrates further into the tape until $d = d_{pen}$, the threshold value at which the flux fully penetrates the tape. At d_{pen} , the tape saturates to the critical current density, with a small current reversal region in the centre.
- For $d < d_{pen}$ the tape remains saturated, however $I_c(B, \theta)$ is suppressed as the field strength at the tape increases.

Defining Full Field Penetration of Tape

In addition to d_{pen} , the largest flux gap at which there is no region within the tape with B = 0, an estimate of the field penetration can be made by examining the current flowing within the HTS stator.

Let $I'_{z} = \iint_{\Omega} |J_{z}| \cdot d\Omega$ and consider a tape with a field dependent $I_{c}(B, \theta)$. As the magnet approaches the stator, I'_{z} increases as the current flows in more of the tape until it reaches a maximum. At lower flux gaps, $I_{c}(B, \theta)$ is suppressed and I'_{z} is reduced. Thus we can define

 $d_{pen,I} = argmax_d \iint_{\Omega} |J_z| \cdot d\Omega.$

For a tape with a constant I_c the physics is different. As the magnet approaches the tape, the current reversal zone becomes increasingly narrower and I'_z is asymptotic to I_c instead of exhibiting a maximum.

For the $I_c(B,\theta)$ model with the parameters in the figure caption, d_{pen} = 13.5(1) mm and $d_{pen,I}$ = 19.0(1) mm. These numbers don't align as there is a trade-off between the increase in I'_z from the current reversal zone narrowing and the decrease from $I_c(B,\theta)$ being suppressed across the whole tape.

Surface integrals of absolute current across the HTS tape as a function of flux gap using a 12 mm x 10 µm HTS stator and a 6 mm x 12 mm N52 grade PM, with the flux gap reduced from 50 mm to 0.5 mm/s. The model was run using field dependent $l_c(B, \theta)$ data with n = 20, as well as using a constant I_c of 283 A with n = 150.

L. Quéval et al., "Superconducting magnetic bearings simulation using an H-formulation finite element model" Superconductor Science and Technology, vol. 31, no. 8, p. 084001 2018
 M. Ainslie et al., "A new benchmark problem for electromagnetic modelling of superconductors: the high-T_c superconducting dynamo" Superconductor Science and Technology, vol. 33, no. 10, p. 105009 2020
 R. Mataira et al., "Origin of the DC output voltage from a high-Tc superconducting dynamo" Applied Physics Letters, vol. 114, no. 114, p. 162601 2019