Modelling Interactions Between HTS Tapes and Permanent Magnets
Pess Tavis Li Mark Ainslie J. Hubertus Weilers J. Chris Bumby Li Modelling Interactions Between HTS Tapes and Permanen

Ross Taylor ^{1, 2}, Mark Ainslie ³, Hubertus Weijers ¹, Chris Bumby ^{1, 2}

⁷ Robinson Research Institute, Victoria University of Wellington, Lower Hutt 5046, Ne

¹Robinson Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand (email: ross.taylor@vuw.ac.nz)

²MacDiarmid Institute, Victoria University of Wellington, Wellington 6140, New Zealand

³ Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Background

- Permanent magnets (PMs) create highly inhomogeneous magnetic fields and are present in devices such as the high-temperature superconducting (HTS) dynamo.
-
- The Brandt analytical model poorly describes such devices, assuming a homogeneous magnetic field, operation within \overline{z} \overline{z} HTS stator

In this work, a finite-element model is constructed to describe the interaction between a coated-conductor HTS tape and a permanent magnet, which is the basis of an HTS dynamo, using COMSOL Multiphysics and measured data from commercial tapes.

Modelling Methodology

• 2D segregated H-formulation model in x-y plane as in [1, 2], comprising a magnetostatic PM model and a time-dependent H-formulation model of the HTS tape. PM movement, to vary the flux gap, is mimicked via a translation operator and appropriate boundary conditions.

- The models are coupled via a Dirichlet condition by applying a magnetic field
-
- $\frac{1}{2\pi} \iint_{\Omega} I_z \frac{-(y_0-y) \hat{x} + (x_0-x) \hat{y}}{(x_0-x)^2 + (y_0-y)^2} dx dy$, where Ω is the tape sub-domain.
- tape centre and edges:

- When a PM is positioned perpendicularly to an HTS tape of width $2a$, flux penetrates the tape starting from the sides. A shielding current flows around the edges, and the central region remains flux free due to shielding effects.
- tape. At d_{nen} , the tape saturates to the critical current density, with a small current reversal region in the centre.
-

Defining Full Field Penetration of Tape

In addition to d_{pen} , the largest flux gap at which there is no region within the tape with $B = 0$, an estimate of the field penetration can be made by examining the current flowing within the HTS stator.

 E_0 $\left|$ $I\right|$ $\left|$ $\right|$ $\left|$ reduced. Thus we can define $\left| \frac{f}{f_c(B)} \right|^{n-1} I$ reduced. Thus we can define
 $\left| \frac{f}{f_c(B)} \right|^{n-1}$ Let $I'_z = \iint_{\Omega} |J_z| \cdot d\Omega$ and consider a tape with a field dependent $I_c(B, \theta)$. As the magnet approaches the stator, I'_z increases as the current flows in more of the tape $\frac{1}{2}$ ²⁰⁰ current flowing within the HTS stator.

Let $I'_z = \iint_{\Omega} |J_z| \cdot d\Omega$ and consider a tape with a field dependent $I_c(B, \theta)$. As the

magnet approaches the stator, I'_z increases as the current flows in more of the tape

unti

డ tape, the current reversal zone becomes increasingly narrower and ^௭ ^ᇱ is asymptotic to $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
For the $I_c(B, \theta)$ model with the parameters in the figure caption, $d_{\text{ren}} = 13.5(1)$ mm For a tape with a constant I_c the physics is different. As the magnet approaches the I_c and I_c and I_c and I_c are ference line I_c instead of exhibiting a maximum.

and $d_{pen, I}$ = 19.0(1) mm. These numbers don't align as there is a trade-off between surface integrals of absolute current across the HTS tape as a function of flux gap using a 12 mm x 10 µm HTS stator and a 6 mm x 12 mm the increase in I'_z from the current reversal zone narrowing and the decrease from I'_z and PM. with the flu

grade PM, with the flux gap reduced from 50 mm to 0.5 mm at a rate of 0.5 mm/s. The model was run using field dependent $L(B, \theta)$ data with $n = 20$, as well as using a constant l_a of 283 A with $n = 150$.

References:

1) L. Quéval et al., "Superconducting magnetic bearings simulation using an H-formulation finite element model" Superconductor Science and Technology, vol. 31, no. 8, p. 084001 2018 2) M. Ainslie et al., "A new benchmark problem for electromagnetic modelling of superconductors: the high-T. superconducting dynamo" Superconductor Science and Technology, vol. 33, no. 10, p. 105009 2020

3) R. Mataira et al., "Origin of the DC output voltage from a high- Tc superconducting dynamo" Applied Physics Letters, vol. 114, no . 114, p. 162601 2019