
Modelling Methodology
• 2D segregated H-formulation model in x-y plane as in [1, 2], comprising a 

magnetostatic PM model and a time-dependent H-formulation model of the HTS 
tape. PM movement, to vary the flux gap, is mimicked via a translation operator 
and appropriate boundary conditions.

• The models are coupled via a Dirichlet condition by applying a magnetic field 
𝑯଴ = 𝑯௘௫௧ + 𝑯௦௘௟௙ on the boundary of the HTS model, where:

• 𝑯௘௫௧ is the field from the PM model at the tape position.

• 𝑯௦௘௟௙ =  
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 𝑑𝑥 𝑑𝑦, where Ω is the tape sub-domain.

• The HTS tape sub-domain uses two logarithmic meshes for greater clarity at the 
tape centre and edges:
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Background

• Permanent magnets (PMs) create highly inhomogeneous magnetic fields and are 
present in devices such as the high-temperature superconducting (HTS) dynamo.

• Widely available HTS coated-conductor tapes exhibit typical n-values of 20 - 60 and 
an angular magnetic field dependence on the critical current, 𝐼௖ 𝐵, 𝜃 .

Flux Evolution with Permanent Magnet Approach

• When a PM is positioned perpendicularly to an HTS tape of width 2𝑎, flux penetrates the tape starting from the sides. A shielding current flows 
around the edges, and the central region remains flux free due to shielding effects.

• As the flux gap, 𝑑, is decreased, flux penetrates further into the tape until 𝑑 =  𝑑௣௘௡, the threshold value at which the flux fully penetrates the 
tape. At 𝑑௣௘௡, the tape saturates to the critical current density, with a small current reversal region in the centre.

• For 𝑑 < 𝑑௣௘௡ the tape remains saturated, however 𝐼௖ 𝐵, 𝜃 is suppressed as the field strength at the tape increases.

Flux contours (indicating direction only, not intensity) of the air subdomain surrounding the HTS tape:

Defining Full Field Penetration of Tape

Governing equations:

∇ × 𝑯 = 𝑱
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𝐾௭/ 𝐾௖(𝐵, 𝜃)𝑑 = 50 𝑚𝑚 ≫  𝑑௣௘௡ 𝑑 = 30 𝑚𝑚 >  𝑑௣௘௡ 𝑑 = 13.5 𝑚𝑚 =  𝑑௣௘௡ 𝑑 = 9 𝑚𝑚 <  𝑑௣௘௡

Problem Geometry
• The Brandt analytical model poorly describes such devices, 

assuming a homogeneous magnetic field, operation within 
the Bean limit (n → ∞) and a constant critical current. 𝑑 = 2 𝑚𝑚 ≪ 𝑑௣௘௡

Sheet current 
density across tape

In addition to 𝑑௣௘௡, the largest flux gap at which there is no region within the tape 
with 𝑩 = 0, an estimate of the field penetration can be made by examining the 
current flowing within the HTS stator. 

Let 𝐼௭
ᇱ =  ∬  𝐽௭ ȉ 𝑑Ω

 

ஐ
and consider a tape with a field dependent 𝐼௖ 𝐵, 𝜃 . As the 

magnet approaches the stator, 𝐼௭
ᇱ increases as the current flows in more of the tape 

until it reaches a maximum.  At lower flux gaps, 𝐼௖ 𝐵, 𝜃  is suppressed and 𝐼௭
ᇱ is 

reduced. Thus we can define

For a tape with a constant 𝐼௖ the physics is different. As the magnet approaches the 
tape, the current reversal zone becomes increasingly narrower and 𝐼௭

ᇱ is asymptotic to 
𝐼௖  instead of exhibiting a maximum.

For the 𝐼௖ 𝐵, 𝜃  model with the parameters in the figure caption, 𝑑௣௘௡= 13.5(1) mm 
and 𝑑௣௘௡, ூ = 19.0(1) mm. These numbers don’t align as there is a trade-off between 
the increase in 𝐼௭

ᇱ  from the current reversal zone narrowing and the decrease from 
𝐼௖ 𝐵, 𝜃 being suppressed across the whole tape.

Superpower SF12050CF 𝐼௖ 𝐵, 𝜃 Data [3]
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In this work, a finite-element model is constructed to describe 
the interaction between a coated-conductor HTS tape and a 
permanent magnet, which is the basis of an HTS dynamo, 
using COMSOL Multiphysics and measured data from 
commercial tapes.

𝑑௣௘௡, ூ = 𝑎𝑟𝑔𝑚𝑎𝑥ௗ ∬  𝐽௭ ȉ 𝑑Ω.
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𝑑 = 19 𝑚𝑚 =  𝑑௣௘௡,ூ

Surface integrals of absolute current across the HTS tape as a function 
of flux gap using a 12 mm x 10 μm HTS stator and a 6 mm x 12 mm N52 
grade PM, with the flux gap reduced from 50 mm to 0.5 mm at a rate 
of 0.5 mm/s. The model was run using field dependent 𝐼௖ 𝐵, 𝜃 data 
with n = 20, as well as using a constant 𝐼௖ of 283 A with n = 150.

𝑑௣௘௡= 12.2(1) mm 

𝑑௣௘௡= 13.5(1) mm 

𝑑௣௘௡, ூ = 
19.0(1) mm 


