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Abstract
HTS Conductor on Round Core (CORC®) cabling concept allows cables to be manufactured with round formers as small as two to five millimetres in diameter. CORC® consist of several layers of helical tapes wound around a central metallic core in an alternating fashion.. A detailed Finite Element modeling of REBCO tape strain state is

done to analyze mechanical behavior CORC cables and wires supported by experiments. Current sharing of REBCO tapes through the copper core is investigated with a simple electrical network model and experiments. Also, another electrical network model is created to study the effects of degraded spots in the tape and visualize the
strained tape’s current flow.
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CORC FEM model developed based on validated REBCO tape model.
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* Mode of failure in CORC cable is by combination of tensile strain damage and kinking, similar to hard-way bending of REBCO tapes. T i
stnce scrossth ape I
« Contact resistance between tapes reduces with CORC bending and saturates below 80 mm bend diameter.
« Electrical network model can be used to visualize the current flow and potential distribution in CORC cable under mechanical loads. High compressive strain in the tape leading to

damage by kink formation Extracted tapes showing periodic kinks ' Advanced Conductor Technolagies LLC|

Placement of voltage taps in experiments matters significantly in case of local damage, a 10% Ic variation can be observed at ~50 cm away from the local damage.




