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We are modeling quasiparticles (QP) that emerge in cuprates in additional charge ordering (CO) potential. At 

strong Frohlich electron-phonon interaction autolocalized carriers form CO and coexist with delocalized ones 

[1]. We show that CO potential transforms Bloch QPs into distributed wave packets (DWP) with different 

momentums in areas with different potential. Modeling the dispersion of the hole-doped cuprates and 

constructing the momentum space trajectories of the new QPs we found that topology of the cuprates 

dispersion forbid QPs with average momentum near antinode. Modeling photoemission of carriers from the 

permitted QPs, we demonstrate that antinodal photoemission (ARPES) spectra have all the features 

characteristic of the pseudogap (PG) behavior in cuprates.   

 

 
 

In the CO phase of cuprates charge density is 

proportional to the sum    (     )  

   (     ) [2] (Fig. 1). This (together with the 

bipolaron charge     , where    is static 

dielectric constant) allows calculating the CO 

potential. It is naturally to suppose that CO 

potential is also quasi-periodic function with the 

same period as CO, C=2π/KCO. One of the 

considered CO potentials is shown in Fig. 2. 

To solve the Shroedinger equation with additional CO potential 

we develop a method reminiscent of finite elements one [3]. We 

divide the conducting plane into so small stripes or squares that 

the CO potential Uj can be considered constant inside. In the 1st 

case boundaries between constant potential areas are 

supposed to be parallel to y-axis as shown in Fig. 3, so that the 

y-projection of the wave vector ky is conserved on each 

boundary. In the 2nd case a boundary is parallel to y or x axes 

and the corresponding projection (ky or kx) is conserved. The 

solution of Shroedinger equation in each stripe (or square) is 

Bloch function with projections of the wave vector satisfying the following system of equations (in the case of 

stripes, a boundary of a square parallel to y and x axes, respectively). 
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where ε(k) is Bloch electron dispersion, E is the QP energy.  

We model carrier dispersion near FS in hole-doped cuprates with 

following function (Fig.4) that provides arc-shaped FS (shown in the 

inset) and flat band near it: 
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We construct numerically the momentum-space 

trajectories of the new QPs. They are shown in 

Fig.5 for the case of stripes and in Fig.6 for the 

case of squares. Consider stationary states with 

the energy    located on the arc (Fig. 5).  The 1st 

trajectory (line 1) reaches both the minimal and 

maximal kinetic energy in the layers with the 

maximal (point A) and minimal (point C) 

potential energy, respectively, thus at φ≥φ1 

there exist real roots of the system of equations 

(1) in each layer of the CO potential. Therefore, 

the states with the energy    and      are 

real QPs. At      and      (line 2) there are 

no real roots of the system (1) in some layers with negative CO potential. Therefore, 

in the case of hole-like dispersion QPs with average momentums near antinode are 

absent [3].  Distribution of the QP state over wave vectors resembles a wave packet. 

However, in this distributed wave packet (DWP) the components with different wave 

vectors are present in different layers of the coordinate space with different CO 

potential.  

One can obtain antinodal ARPES spectrum from the QPs’ momentum space 

trajectories  that reach the First Brillouin zone boundary as one shown in Fig. 6 with 

red. The result is presented in Fig. 7 where intensities as functions of QP energy are 

inversely proportional to the area of the momentum-space trajectory (inset of Fig. 7). It demonstrates giant broadening 

and shift of the spectral weight down in the binding energies. Shift value at   , the Fermi momentum in the high-

temperature ARPES spectrum, where PG is absent, is the PG width, and it is approximately the potential amplitude   . Just 

the same manifestations of the PG are observed in ARPES spectra of cuprates [4]. 

 The present approach enables one to calculate doping 

dependences of the PG width presented in Fig. 8 (      

and 60 for blue and black circles) together with PG width 

values measured in Bi2212 experimentally with STM [5] 

(gray diamonds) and PG onset temperature T* (Fig. 9, 

black circles) calculated as temperature corresponding to 

thermal decay of 95% of bipolarons responsible for the 

CO potential. To obtain this temperature we use 

distribution function of carriers in systems with strong 

long-range EPI [6] and bipolaron energy as function of 

doping. Calculated dependence is in good agreement with that observed in LSCO and Nd/Eu-LSCO [7] (blue diamonds).  
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