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1. Abstract

In order to introduce high-temperature superconducting fault current limiters (SFCL) into electrical networks, a model is needed to predict the various phenomena that appear within the limiter. This paper presents a

model of a resistive type superconducting fault current limiter developed in OpenModelica software. The finite difference method is used to solve the heat equation. The model considers the electrical and thermal

phenomena in the thickness and the length of the HTS tape, which allows to study the presence of hot spots phenomenon. The obtained results are compared with finite element analysis.

This paper presents a multi-scale model of a

rSFCL that takes into account electrical and

thermal phenomena in the length and thickness

of the tape (2D model).

❖ The model is configurable and allows to

simulate physical phenomena in 1D and 2D

including the presence of thin layers

(interfacial effects). The 3D model can be

obtained by discretizing and considering a

heat diffusion according to the width.

❖ The open-source OpenModelica software

offers the advantage that it is compatible with

the FMI (Functional Mock-up Interface)

standard for co-simulation and model

exchange.

❖ the simplicity of the finite difference method

allows to reduce the calculation time of the

simulation.
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• (RE)BCO normal−state resistivity:

• Power law:

𝑅𝑒𝑙 𝐽, 𝑇 = 𝜌 𝐽, 𝑇
𝐿
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❖ The resistance of each (RE)BCO discretization element: 

𝜌𝑁 𝑇 = 𝜌𝑇𝐶 + 𝛼(𝑇 − 𝑇𝑐ሻ

• The final resistivity of the (RE)BCO:

𝜌𝑠𝑐 𝐽, 𝑇 =
𝜌𝑠 𝐽, 𝑇 × 𝜌𝑁 𝑇
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❖ The resistance of each silver and Hastelloy discretization element: 

2. Electrical Model 
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3. Thermal Model
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❖ General heat equation:
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❖ Finite difference discretized form:

❖ Conservation of the flux density between layers.

❖ For the boundary conditions, the Neumann condition is applied. 

𝑄𝐶𝑆1𝑗 = 𝑄𝐽1𝑗 −
ℎ × (𝛥𝑌 × 𝑙ሻ × (𝑇𝑆𝑖𝑙𝑣𝑒𝑟1𝑗 − 77ሻ

𝛥𝑌 × 𝑙 × 𝛥𝑍𝑆

❖ The cooling: 

• ℎ : heat transfer coeff

• 𝑄𝑗: Joule losses per unit volume

• 𝜅: the heat conductivity

• 𝜌𝑚: the mass density

• 𝐶𝑝: the specific heat capacity

• 𝛷: The heat flux density 

Results and Comparisons

A tape of 5 mm long tape having a hot spot

(𝐽𝑐𝑓 = 0.55𝐽𝑐) of 1 mm in length supplied

by a DC source equal to 100A is used.
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❑ Hot spot study in the tape length:

❖The solver (DASSL) integrated in OpenModelica has been used to solve the non-linear coupled equations

with a large number of variables.

❖ Each temperature curve represents a different virtual measurement location, distributed equidistantly along 

the y axis (one measurement at every 250μm)

❖ There is excellent agreement between the models, where the curves can hardly be distinguished (<1%)

OpenModelica

Apply Kirchhoff's laws
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2.5 MA cm-2 1 µV cm-1 15 30 µΩcm 0.47µΩcm-1 40 µΩ 90K 77K 4 mm 2 µm 2 µm 1 µm 50 µm
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