

The mo

The modeled system

$\int E(J,B)$	$=E_c J J$
$\begin{cases} E(J,B) \\ J_c(B) = \end{cases}$	$(1+B_0^{-1}$

deling approach

$$\begin{cases} E(J,B) = E_c |J J_c^{-1}(B)|^n \\ J_c(B) = \frac{J_{c0}}{(1+B_0^{-1}\sqrt{k^2B_c^2}+B_c^2)^{\beta}} \\ J_c(B) = \frac{J_{c0}}{(1+B_0^{-1}\sqrt{k^2B_c^2}+B_c^2)^{\beta}} \\ \frac{J_c(B) = \frac{J_{c0}}{(1+B_0^{-1}\sqrt{k^2B_c^2}+B_c^2)^{\beta}} \\ \frac{J_c(B) = \frac{G_{BR}I}{(1+B_0^{-1}\sqrt{k^2B_c^2}+B_c^2)^{\beta}} \\ \frac{J_c(B) = \frac{G_{BR}I}{(1+B_0^{-1}\sqrt{k^2B_c^2}+B_c^2)^$$

Considering the non uniform

The current I_i flowing in an elementary section ΔS_i

k=1, 2,3 ...

 $I_a, J_{c0}, B_0, k, \beta, E$ $I = I_a / (N_r \times N_z)$

Evaluate $B_r, B_z, ...$

Evaluate the new

 $|P_k -$

DC modeling & characterization of HTS coils with non uniform current density distribution

S. FAWAZ¹, H. MENANA¹, B. DOUINE¹ and L. QUEVAL²

G. R. E. E. N. ¹ University of Lorraine, Group of Research in Electrical Engineering of Nancy (GREEN), France ² University of Paris-Saclay, GeePs – Centrale Supélec, Paris, France.

Abstract

This work presents a DC modeling approach for the calculation of current density distribution in a 1G HTS pancake coils taking into consideration the non-uniformity of J in the HTS tape section using a power minimization criterion. Integral equations are used to evaluate the magnetic flux density, enabling to discretize only the active parts of the system.

Application								
Parameter	I _c	E _c	L	W _t	H _t	R _o	R _i	N _t
Value	170 A	1 μV/cm	102 m	0,23 mm	4,3 mm	27 cm	9 cm	92

acterization

pined with a least square method of the E(J) & $J_c(B)$ laws using

k	B ₀	β	n
),14	0,14 T	2,26	15

red U-I curves of the HTS coil

Current density and magnetic field distributions in the inner tape, for an applied current $I_a = 150$ A.

Evolution of the power dissipated in the coil during the iterative solving for $I_a = 150 \text{ A} \& \varepsilon = 10^{-6}$,

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd – 23rd June 2021, Virtual (Nancy, France)

Results

