

This work presents a DC modeling approach for the calculation of current density distribution in a 1G HTS pancake coils taking into consideration the non-uniformity of J in the HTS tape section using a power minimization criterion. Integral equations are used to evaluate the magnetic flux density, enabling to discretize only the active parts of the system.

The model

Abstract

Application

The modeled system

DC modeling & characterization of HTS coils with non uniform current density distribution

S. FAWAZ ¹ , H. MENANA ¹ , B. DOUINE ¹ and L. QUEVAL ²

acterization

bined with a least square method

Current density and magnetic field distributions in the inner tape, for an applied current I_a =150 A.

Evolution of the power dissipated in the coil during the iterative solving for I_a =150 A & $\varepsilon = 10^{-6}$,

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd - 23rd June 2021, Virtual (Nancy, France)

The modeling approach							
$\frac{2}{4}$	\n $\begin{bmatrix}\nE(J, B) = E_c J J_c^{-1}(B) ^T \\ \downarrow \Delta S_1\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\n\Delta S_2 \\ \downarrow \Delta S_3\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) = \frac{J_{c0}}{(1 + B_0^{-1} \sqrt{k^2 B_c^2 + B_r^2})^{\beta}} \\ \downarrow \Delta S_2\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\n\Delta S_1 \\ \Delta S_2\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) = \frac{J_{c0}}{(1 + B_0^{-1} \sqrt{k^2 B_c^2 + B_r^2})^{\beta}} \\ \downarrow \Delta S_1\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\n\Delta S_2 \text{ the modeling approach is comb.}$ \n	
$\begin{bmatrix}\n\Delta S_1 \\ \overline{N} \\ \overline{N} \\ \overline{N} \\ \overline{N} \\ \overline{N} \\ \overline{N}\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) \\ \overline{N} \\ \overline{N} \\ \overline{N}\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) \\ \overline{N} \\ \overline{N} \\ \overline{N}\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) \\ \overline{N} \\ \overline{N}\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) \\ \overline{N} \\ \overline{N}\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) \\ \overline{N} \\ \overline{N}\n\end{bmatrix}$ \n	\n $\begin{bmatrix}\nI_c(B) \\ \overline{N} \\ \overline{N}\n\end{bmatrix}$ \n	\n \begin

Considering the non uniform

The current I_i flowing in an elementary section ΔS_i

 $k=1, 2, 3...$

Evaluate the new

G.R.E.E.N.¹ University of Lorraine, Group of Research in Electrical Engineering of Nancy (GREEN), France ² University of Paris-Saclay, GeePs – Centrale Supélec, Paris, France.

elling approach	Ar						
$E(J, B) = E_c J J_c^{-1}(B)''$	$J_{c,0}$	$J_{c}(B) = \left(1 + B_0^{-1} \sqrt{k^2 B_c^2 + B_c^2}\right)''$	$\overline{A} = \overline{G_A} \overline{I}; \quad \overline{B}_c = \overline{G_{BK}} \overline{I}; \quad \overline{B}_c = \overline{G_{BK}} \overline{I}$	The modeling approach is combined with a least square method to determine the parameter of the $E(J)$ & $J_c(B)$ laws using the parameters of the $E(J)$ & $J_c(B)$ laws using the current density distribution			
$I_i = \frac{\Delta S_i \langle r \rangle_i J_c(B_i)}{S_i r_i \langle J_c(B) \rangle_i} I_a \times \frac{ I_a }{\sum I_i }$	The identified parameters	$Model$	$\overline{N_0} \left[\frac{C(t)}{\text{Nolecularical}} \right] \xrightarrow{N_0} \overline{N_0} \left[\frac{C(t)}{\text{Nolecularical}} \right] \xrightarrow{N_0} \overline{N_0} \left[\frac{S_a B_b}{k \beta n} \right]$				
$J = I/\Delta S_i, E(J_c), I_c$	$\overline{R_0} \left[\frac{S_a B_b}{S_a B_b} \right]$	$\overline{R_1} \left[\frac{S_a B_b}{S_a B_b} \right]$	$\overline{R_2} \left[\frac{S_a B_b}{S_a B_b} \right]$	$\overline{R_3} \left[\frac{S_a B_b}{S_b B_b} \right]$	$\overline{R_4} \left[\frac{S_a B_b}{S_b B_b} \right]$	$\overline{R_5} \left[\frac{S_a B_b}{S_b B_b} \right]$	$\overline{R_6} \left[\frac{S_a B$

Calculated U-I curves of the HTS coil

Results

