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Problem statement
We consider the assembly made of a L × L square niobium film and
W ×L niobium rectangular strips. The thickness of all films is denoted
by d. The long sides of the rectangular strips are placed parallel to one
of the side of the square, and two consecutive films are separated by
an insulating SiO2 layer of thickness tSiO2

, as shown in Figure 1d. A
uniform magnetic field is applied perpendicular to the assembly. This
field is ramped up from 0 to a given value, Ha, at a constant rate, Ḣa,
and then ramped back to 0 at the same rate.

The critical state of these kind of assemblies are non-trivial [1].
For instance, in a two-layers assembly, the observed discontinuity lines
(d-lines), which highlight the sharp changes of direction of the current
density, cannot be obtained from a simple composition of the d-lines of
individual films, as depicted in Figure 1a and Figure 1b. In particular,
in the remanent state, an additional horizontal line of length is `h,
appears at the center of the assembly, as shown in Figure 1c.

In a previous work [2], it was shown how the magnetic-field de-
pendence of the critical current density in the films is a crucial attribute
that contributes to the observation of a critical states like those of Figure
1c in two-layers superimpositions. In what follows, we recall the most
salient results for two-layers assemblies and then proceed with an
investigation of the geometrical parameters involved in the two-layers
assembly. The results are also extended to the case of three-layers
systems. These investigations are carried out by numerical means.
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Figure 1: Magneto-optical images of d-lines in (a), a single square film, (b) a
single rectangular strip, (c) an assembly of a square film and a rectangular film.
(d) Sketch of the superconducting two-layers assembly. If not stated otherwise,
it is assumed that L = 200 µm,W = L/2, d = 300 nm and tSiO2

= 300nm.

Numerical modelling
In order to model the penetration of magnetic field in two-layers supercon-
ducting structures, a finite element (FE) H − φ formulation was used. The
equation to solve is :∫

Ω

µ0 ḣ · ψ dΩ+

∫
Ω

µ0 Ḣa · ψ dΩ+∫
Ωc

ρ(|∇ × h|)∇× h · ∇ × ψ dΩc = 0

The magnetic field, H = h + Ha, where h and Ha are the reaction field
and the applied field, respectively. µ0 = 4π × 10−7 H/m is the vacuum
magnetic permeability, ρ = Ec/Jc(|B|)(|J|/Jc(|B|))n−1 is the electrical
resistivity in the superconducting films, where Ec = 1 µV/cm is the criti-
cal electric field and Jc(|B|) = Jc0/(1 + |B|/B0)α is the magnetic field
dependent critical current density. If not stated otherwise, it is assumed that
n = 19, Ḣa = 1 kA/m.s, Jc0 = 3.4 MA/cm2, B0 = 1.25 mT, α = 0.42

in the square film and Jc0 = 5.4 MA/cm2, B0 = 4.9 mT, α = 0.51 in the
strips. Ω is the total domain, Ωc is the conducting domain. ψ are linear edge
test-functions, and φ are linear nodal test-functions. The mesh is produced
in Gmsh, while the FE equation is solved in GetDP [3].

The crucial role of Jc(|B|)
Square film Rectangular strip

(a)

Bz (G)

−88.9 68.8 226

(b)

Bz (G)

−88.3 66.5 221

(c)

Bz (G)

−164 25.8 216

(d)

Bz (G)

−163 28.6 220

(e)

J (A/cm2)

0.82 2.53 4.25

(f)

J (A/cm2)

0.28 1.81 3.33

Figure 2: (a)-(b): Jc = 2 MA/cm2 in both films. (c)-(f): Jc(|B|), with
Jc0 = 12 MA/cm2 and B0 = 5 mT in both films. (a)-(d): Bz in the
remanent state. (e)-(f): Current lines in the remanent state.

Two-layers system: `h vs W
(a)

Bz (G)

−125 18.4 162

(b)

Bz (G)

−130 23.5 177

(c)

Bz (G)

−134 28.4 190

(d)

Bz (G)

−136 31.9 200

Figure 3: Bz in the square film for (a) W = L/6, (b) W = L/3, (c) W =

L/2 and (d)W = 2L/3.

Two-layers system: off-centred strip
(a)

Bz (G)

−180 38.3 256

(b)

Bz (G)

−179 30.4 240

(c)

Bz (G)

−178 32.3 243

(d)

Bz (G)

−177 27.5 232

Figure 4: Bz in the square film for a strip is off-centred with respect to the
centre of the square film by a distance, Xc, equal to (a) Xc = 10 µm, (b)
Xc = 20 µm, (c)Xc = 30 µm and (d)Xc = 40 µm.

Two-layers system: `h vs. tSiO2

L/2

W

L/2

`h/2

α

β

π/4

π/4

Jc−int

Jc−ext

β = π
4 − α

Jc−ext

Jc−int
= 1

cos 2α

`h
L = 1

2

(
Jc−ext

Jc−int
− 1

)
- - - ≡ Symmetry
Jc−int

Jc−ext
=
√
3/2

Figure 5: Current lines in a single film with non-uniform Jc, according to
the critical state. In the central strip of width W = L/2, Jc = Jc−int,
while Jc = Jc−ext > Jc−int elsewhere. Blue lines represent the d-lines,
while thin red lines show the current lines in the square film.
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Figure 6: `h/L as a function of tSiO2
/d. The inset represents the decay of

the scalar magnetic potential, φ/φ0, as a function of the distance away from
the centre of the surface of a single square film, Z/L, where φ equals φ0.

Three-layers systems
(a)

Bz (G)

−125 18.4 162

(b)

Bz (G)

−180 41.2 262

(c)

Bz (G)

−173 43 259

Figure 7: Bz in the square film for diverse assemblies of films. Jc0 = 12

MA/cm2,B0 = 5 mT, α = 1 in each film.

Conclusion
Numerical modelling was used to highlight how the geometric parameters of the assembly impacts the distribution of magnetic field inside three-
dimensional assemblies made of a square film and several rectangular strips. In particular, it is illustrated how the distance between the strip and the
film modulates the magnetic coupling between the films and influences `h.
Adding a second strip on the other side of the square film, the total reaction field from the strips is strengthened, the critical current density non-uniformities
are even more exaggerated, and, hence, `h increases. If the second strip is placed on top of the first one, the critical structures becomes more complex, because
of the two distances that separate each strip from the film are uneven. This illustrates how complex the critical states in superposed films with different
cross-sections can become, and how much the current patterns may become non-trivial.
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