H-@ Finite Element Formulation for Modeling
Thin Superconducting Layers

Bruno Alves, Marc Laforest, Fréderic Sirois

Funding: Collaborators:
- Fonds de recherche du Quéebec - Nature et - Valtteri Lahtinen

technologies Frédéric Trillaud
- Coordenacao de Aperfeicoamento de Pessoal Ruth V. Sabariego
de Nivel Superior — Brazil (CAPES) Christophe Geuzaine

- MITACS Alexandre Arsenault

June 22, 2021



The magnetic field formulation

eddy current problems
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Q. = HTS region (€2, C €2 )
(2. = conducting region
C. = i-th cohomology, i.e. thick cut
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where:

W, are the vector basis functions of each edge in €2,
« W, are the nodal basis functions of each node in Qf

» . are discontinuous shape functions associated with a cut related to the current [; to be
imposed to each conducting subdomain i in €2



Modelling thin regions

discretization issues and the thin-shell (TS) model

Coarser mesh

Thin-shell (TS) model

Id
Fine mesh
e Independent variables along top and bottom
of the shell
3-D example of a single thin region e Discontinuity of normal and tangential fields

e Simpler mesh, with less elements




The classical thin-shell model for ohmic conductors

two impedance boundary conditions (IBCs) in harmonic regime [Mayergoyz,1995]
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The classical thin-shell model for ohmic conductors

two impedance boundary conditions (IBCs) in harmonic regime [Mayergoyz,1995]
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The classical thin-shell model for ohmic conductors

field’s normal components [Krahenbuhl, 1993] : H-formulation example
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Magnetic flux continuity




The classical thin-shell model for ohmic conductors

connection to the global system of equations in dual formulations [Geuzaine, 2000]

Magnetic field formulation (H):

(pV xh,V X w) + (0, uh, w)Q o T (X e, W) — (n;x e, w)r. =0
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Magnetic vector potential formulation (A):
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I-A Formulation in terms of IBCs
approach proposed by [Zhang, 2017]

A-formulation - T-formulation in 1-D dx(pdxtn) — ()th
[ - Current constraint of type [=(t,,—t,)d

- The current density J; = d,1,

which is impressed in the A-formulation as (hr+ —h,) _
d <
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Proposed approach

TS model in the H-formulation with virtual discretization

/\’ Cl /QS /\, Cl '/.¢+

Q¢ G ¢ Virtual domain SAES and 1-D virtual

C _ I
discretization across the thickness of
the thin region

Features:
Thin regions are represented by lower dimensional geometries
Nodes, edges and surfaces are duplicated = QCC become multiply connected and h, discontinuous over I

Boundaries of the lower dimensional geometry are either a single point (2-D) or curve (3-D), i.e. no independent
variables top/bottom

Thick cuts (C)) associated to each conductor £2; are determined purely from the mesh [Pellikka, 2013]



Proposed approach

IBCs derivation

The boundary conditions in the weak form are given by

Virtual domain SAES and 1-D virtual

discretization across the thickness of
the thin region

Remark

With N = 1, and evaluating SV and .ZV analytically we find the system
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which is equivalent to the IBCs in the classical TS model when 6 > d and dual to the T-A-formulation
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Proposed approach

current density and power-law treatment

The profile of h'¥) is linear across Ay® = d/N and

hk_hk—l
(k) _ k) __ [ [
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is constant in Q®

Virtual domain SAES and 1-D virtual

discretization across the thickness of
the thin region

The local 1-D E-J power-law is

The proposed TS model was implemented in Gmsh [Geuzaine, 2009] and solved using GetDP [Dular].
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2-D Validation

single HTS tape (only the HTS layer is modelled using the TS model) [13,14]

V4

HTS tape

d| [ :

Magnetic flux density:

H-¢@-formulation (reference)

t=1T/8
t=T/4
t=1T/2

v

Reference IS model

Simulations parameters:

- e, = 107" v/m

. j.=5x%10° A/m?

e n=21

« Imposed current: 0.9/,
e [ =4 mm

e« d=10pum

H-¢ TS model (N = 1) T-A-formulation

t=1T/8 t=1T/8

t=1T/2 t=1T/2
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2-D Validation

two closely packed tapes carrying anti-parallel currents [Grilli, 2010]

2y
- = HTS
B —
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Magnetic field normal component along the tape width (N = 1)

v

Simulations parameters:
- .= 107" Vv/m

. j.=5x10% A/m?

e n=21

 Imposed current: 0.9/,

e [ =4 mm
e« d=10pum
e L =250 um

Magnetic field tangential component across the tape thickness
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2-D Validation

current density distribution in the tape

Single tape
Reference TS model (N =11)

Closely packed tapes

Reference

TS model (N =11)
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2-D Validation

AC losses computation

Instantaneous AC loss:

N

Total AC losses per cycle as a function of the transport current

L(1) = Z [ p(k) H®OT o) (k) g1
| B

=1 "1

N

2
|l
N

Number of DoFs and CPU time with different /N values
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2-D Application #1

Infinitely long representation of a racetrack coil

Magnetic flux density

Same transport current

Reference

IS model (N=4)

Anti-parallel transport current
Reference TS model (N=4)

Total AC losses per cycle in each tape with I = 0.91,
(1 corresponding to the bottom tape and 20 the top pate )
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2-D Application #2

full HTS tape: substrate + HIS + silver stabilizer
Reference IS model

-

silver —»
HTS —

ferromagnetic
substrate

Reference TS model (N=11)

Magnetic flux density:




2-D Application #2

full HTS tape: substrate + HIS + silver stabilizer

Total AC losses per cycle as a function of the transport current

Number of DoFs and CPU time

Current density in the HTS layerat t = T/2

Reference

TS model (N = 9)
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3-D Validation

single HTS tape

Total AC losses per cycle as a function of the transport current

Projection of the current density onto the z-direction over time

Animation

Relative current density at t = T7/4
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3-D Application

Roebel cable [Zermeno,2013]
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3-D Application

Roebel cable [Zermeno,2013]

Total AC losses per cycle as a function of the transport current
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I




3-D Application

Roebel cable [Zermeno,2013]

Exterior face
t =T/4)

Interior face

t=1T/4)

Projection of the current density across the strands thickness

Animation
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Conclusions

A new finite element thin-shell (1S) model was proposed and demonstrated to compute local and
global quantities in HTS simulations efficiently

Characteristics of proposed TS model:

* Greatly simplifies meshing and reduces the number of DoFs

 Couples naturally with either the H, H-¢ or A formulations (A-formulation not shown here)
* No spurious oscillation such as in the T-A formulation

 Complete electromagnetic formulation in terms for magnetic and electric fields

e Case N = | is equivalent to the 7-A-formulation, but with better numerical stability

* Allows considering any type of problem involving HTS tapes, including:

* Closely packed tapes = both edge and top/bottom losses are taken into account
* Tapes with multiple layers with different properties, e.g. ferromagnetic substrates, etc
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