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The magnetic field formulation
Weak form
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Modelling thin regions
discretization issues and the thin-shell (TS) model

3-D example of a single thin region

Fine mesh

3

Coarser mesh

d
Thin-shell (TS) model

• Independent variables along top and bottom
 of the shell
• Discontinuity of normal and tangential fields
• Simpler mesh, with less elements



The classical thin-shell model for ohmic conductors
two impedance boundary conditions (IBCs) in harmonic regime [Mayergoyz,1995]
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ē−
t

ē+
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The classical thin-shell model for ohmic conductors
two impedance boundary conditions (IBCs) in harmonic regime [Mayergoyz,1995]
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The classical thin-shell model for ohmic conductors
field’s normal components [Krahenbuhl, 1993] : -formulation exampleH
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connection to the global system of equations in dual formulations  [Geuzaine, 2000]

Magnetic field formulation ( ):H

Magnetic vector potential formulation ( ):A

The classical thin-shell model for ohmic conductors
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-  Formulation in terms of IBCsT A
approach proposed by [Zhang, 2017]

8

-formulationA

tn1

tn2

h+
t

h−
t

∂x(ρ∂xtn) = ∂tbn- -formulation in 1-DT

I = (tn1 − tn2)d- Current constraint of type

jz = ∂xtn- The current density
(ht

+ − ht
−)

d
= jz

which is impressed in the -formulation as  A

bn = μ
h+

n + h−
n

2
From COMSOL user guide

e+
t − e−

t = 0and 

∂xe
±
t = − μ∂th

±
nusing  Faraday’s law in the form

h+
t − h−

t

d
= σ

(e+
t + e−

t )
2

we have

In addition:

Γs

Impedance condition (1)

Impedance condition (2)
ē+
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Proposed approach
TS model in the -formulation with virtual discretizationH
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Features:

• Nodes, edges and surfaces are duplicated   become multiply connected and  discontinuous over ⇒ ΩC
c ht Γs

ϕ+

ϕ−

• Boundaries of the lower dimensional geometry are either a single point (2-D) or curve (3-D), i.e. no independent 
variables top/bottom

• Thin regions are represented by lower dimensional geometries
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C1C1



Proposed approach
IBCs derivation
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The boundary conditions in the weak form are given by
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Proposed approach
current density and power-law treatment
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The proposed TS model was implemented in Gmsh [Geuzaine, 2009] and solved using GetDP [Dular].
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2-D Validation
single HTS tape (only the HTS layer is modelled using the TS model) [13,14]
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HTS tapeI

Simulations parameters:

•  V/m

•  A/m 

• 

• Imposed current: 0.9 

•  mm

•  m

ec = 10−4

jc = 5 × 108 2

n = 21
Ic

l = 4
d = 10 μ

Reference TS model

t = T/8 t = T/8t = T/8

t = T/4 t = T/4 t = T/4

t = T/2 t = T/2 t = T/2

- -formulation (reference) H ϕ -  TS model ( )H ϕ N = 1 - -formulationT A
Magnetic flux density:
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2-D Validation
two closely packed tapes carrying anti-parallel currents [Grilli, 2010]

Magnetic field tangential component across the tape thicknessMagnetic field normal component along the tape width ( )N = 1

Simulations parameters:

•  V/m

•  A/m 

• 

• Imposed current: 0.9 

•  mm

•  m

•  m

ec = 10−4

jc = 5 × 108 2

n = 21
Ic

l = 4
d = 10 μ
L = 250 μ
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2-D Validation
current density distribution in the tape

Reference TS model ( )N = 11 Reference TS model ( )N = 11
Closely packed tapesSingle tape
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2-D Validation
AC losses computation

Total AC losses per cycle as a function of the transport current

Number of DoFs and CPU time with different  valuesN

Instantaneous AC loss:

ℒ(t) =
N

∑
k=1

∫Γk
s

ρ(k)H(k)T𝒮(k)H(k)dΓ

where  H(k) = [ hk
t

hk−1
t ]

N = 1

N = 4
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2-D Application #1
infinitely long representation of a racetrack coil 

Same transport current Anti-parallel transport current 
Reference TS model (N=4) Reference TS model (N=4) Total AC losses per cycle in each tape  with 


(1 corresponding to the bottom tape and 20 the top pate )
I = 0.9Ic

Magnetic flux density



2-D Application #2
full HTS tape: substrate + HTS + silver stabilizer

Reference TS model

silver
HTS

ferromagnetic

substrate

Reference TS model (N=11)

Magnetic flux density:
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2-D Application #2
full HTS tape: substrate + HTS + silver stabilizer

Total AC losses per cycle as a function of the transport current

Reference

TS model ( )N = 9

Current density in the HTS layer at t = T/2

Number of DoFs and  CPU time
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3-D Validation
single HTS tape

C1ΩC
c

Total AC losses per cycle as a function of the transport current
Relative current density at t = T/4

Projection of the current density onto the -direction over timez
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Animation



2020

3-D Application
Roebel cable [Zermeno,2013]
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3-D Application
Roebel cable [Zermeno,2013]

Total AC losses per cycle as a function of the transport current

t = T/8

t = T/4

t = T/2
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Exterior face

( )t = T/4

Interior face

( )t = T/4

Projection of the current density across the strands thickness

3-D Application
Roebel cable [Zermeno,2013]

Animation



Conclusions
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A new finite element thin-shell (TS) model was proposed and demonstrated to compute local and 
global quantities in HTS simulations efficiently 

Characteristics of proposed TS model:


• Greatly simplifies meshing and reduces the number of DoFs 

• Couples naturally with either the , -  or  formulations ( -formulation not shown here)

• No spurious oscillation such as in the T-A formulation


• Complete electromagnetic formulation in terms for magnetic and electric fields 
• Case  is equivalent to the - -formulation, but with better numerical stability 

• Allows considering any type of problem involving HTS tapes, including:

• Closely packed tapes   both edge and top/bottom losses are taken into account 
• Tapes with multiple layers with different properties, e.g. ferromagnetic substrates, etc

H H ϕ A A

N = 1 T A

⇒
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