June 22, 2021

HT5 2020 nodelling

H- ϕ Finite Element Formulation for Modeling **Thin Superconducting Layers**

Bruno Alves, Marc Laforest, Frédéric Sirois

- Valtteri Lahtinen
- Frédéric Trillaud
- Ruth V. Sabariego
- Christophe Geuzaine
- Alexandre Arsenault

Funding:

- Fonds de recherche du Québec Nature et technologies
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES)
- MITACS

POLYTECHNIQUE MONTRÉAL

UNIVERSITÉ **D'INGÉNIERIE**

Collaborators:

The magnetic field formulation

Weak form

$$
\mathbf{h}, \nabla \times \mathbf{w} \Big)_{\Omega_c} + \partial_t (\mu \mathbf{h}, \mathbf{w})_{\Omega} + \langle \mathbf{n} \times \mathbf{e}, \mathbf{w} \rangle_{\Gamma_{\mathbf{e}}} = \mathbf{0}
$$

$$
\underline{\mathbf{h}} \mathbf{w} \quad \rho(\mathbf{j}) = \frac{e_c}{j_c} \left(\frac{|\mathbf{j}|}{j_c} \right)^{n-1}
$$

$$
\mathbf{h} = \sum h_e \mathbf{w}_e + \sum e_n \nabla w_n + \sum
$$

$$
= \sum_{e \in \Omega_c} h_e \mathbf{w}_e + \sum_{n \in \Omega_c^c} - \phi_n \nabla w_n + \sum_{C_i} I_i \psi_i
$$

• \mathbf{w}_e are the vector basis functions of each edge in Ω_c • w_n are the nodal basis functions of each node in Ω_c^C

• w_i are discontinuous shape functions associated with a cut related to the current I_i to be imposed to each conducting subdomain i in Ω

eddy current problems

Modelling thin regions

discretization issues and the thin-shell (TS) model

3

Thin-shell (TS) model

- Independent variables along top and bottom of the shell
- Discontinuity of normal and tangential fields
- Simpler mesh, with less elements

The classical thin-shell model for ohmic conductors

two impedance boundary conditions (IBCs) in harmonic regime [Mayergoyz,1995]

$$
=\frac{1+j}{\delta}, j=\sqrt{-1}, \delta=\sqrt{2/(\mu\sigma\omega)}, \omega=2\pi f
$$

^s ∪ Γ− *s*

The classical thin-shell model for ohmic conductors

two impedance boundary conditions (IBCs) in harmonic regime [Mayergoyz,1995]

The classical thin-shell model for ohmic conductors

field's normal components [Krahenbuhl, 1993] : H-formulation example

connection to the global system of equations in dual formulations [Geuzaine, 2000]

Magnetic field formulation (H):

Magnetic vector potential formulation (A):

The classical thin-shell model for ohmic conductors

$$
(\nu \nabla \times \mathbf{a}, \nabla \times \mathbf{w})_{\Omega \setminus \Omega_{s}} + (\sigma \partial_{t} \mathbf{a}, \mathbf{w})_{\Omega_{c} \setminus \Omega_{s}} \left| + \langle \mathbf{n}_{s} \times \mathbf{h}, \mathbf{w} \rangle_{\Gamma_{s}^{+}} - \langle \mathbf{n}_{s} \times \mathbf{h}, \mathbf{w} \rangle_{\Gamma_{s}^{-}} = 0 \right|
$$

$$
(\rho \nabla \times \mathbf{h}, \nabla \times \mathbf{w})_{\Omega_c \setminus \Omega_s} + (\partial_t \mu \mathbf{h}, \mathbf{w})_{\Omega \setminus \Omega_s} + \langle \mathbf{n}_s \times \mathbf{e}, \mathbf{w} \rangle_{\Gamma_s^+} - \langle \mathbf{n}_s \times \mathbf{e}, \mathbf{w} \rangle_{\Gamma_s^-} = 0
$$

$$
\Omega_c^C
$$
 $\bigwedge_{\Gamma_s^-}^{\Gamma_s^+}$ Γ

*T***-***A* **Formulation in terms of IBCs**

approach proposed by [Zhang, 2017]

 $b_n = \mu$ $h_n^+ + h_n^-$ From COMSOL user guide $b_n = \mu \frac{n}{2}$ and $e_t^+ - e_t^- = 0$ $h_t^+ - h_t^$ *d* $=$ σ $(e_t^+ + e_t^-)$ 2 we have Impedance condition (2)

- $\partial_x(\rho \partial_x t_n) = \partial_t b_n$ T -formulation in 1-D *I* = $(t_{n1} - t_{n2})d$ $\vec{J}_z = \partial_x t_n$ $(h_t^+ - h_t^-)$ *d* which is impressed in the *A*-formulation as
	- using Faraday's law in the form $\partial_x e_t^{\pm} = \mu \partial_t h_n^{\pm}$
- Impedance condition (1)
	- \overline{e}_t^+ − $\overline{e}_t^$ *t d* $=-\partial_t\mu$ $(\bar{h}_t^+ + \bar{h}_t^-)$ 2 is not respected!

In addition:

Proposed approach

Features:

- Thin regions are represented by **lower dimensional geometries**
- Nodes, edges and surfaces are duplicated \Rightarrow Ω_c^C become multiply connected and \textbf{h}_t discontinuous over Γ_s
- Boundaries of the lower dimensional geometry are either a single point (2-D) or curve (3-D), i.e. no independent variables top/bottom
- Thick cuts (C_i) associated to each conductor Ω_i are determined purely from the mesh [Pellikka, 2013]

Proposed approach *IBCs derivation*

The boundary conditions in the weak form are given by

$$
\langle \mathbf{n}_{s} \times \mathbf{e}, \mathbf{w} \rangle_{\Gamma_{s}^{+}} - \langle \mathbf{n}_{s} \times \mathbf{e}, \mathbf{w} \rangle_{\Gamma_{s}^{-}} = \sum_{k=1}^{N} \sum_{j=1}^{2} \langle \rho^{(k)} \mathbf{h}_{t}^{m}, \mathbf{w} \rangle_{\Gamma_{s}^{m}} \cdot \mathcal{S}_{ij}^{(k)}
$$

$$
+ \sum_{k=1}^{N} \sum_{j=1}^{2} \partial_{t} \langle \mu^{(k)} \mathbf{h}_{t}^{m}, \mathbf{w} \rangle_{\Gamma_{s}^{m}} \cdot \mathcal{M}_{ij}^{(k)} \quad \forall i = 1, 2
$$

Virtual domain Ω_{s} and 1-D virtual discretization across the thickness of the thin region ̂

Remark

With $N = 1$, and evaluating $\mathcal{S}^{(1)}$ and $\mathcal{M}^{(1)}$ analytically we find the system

$$
\begin{bmatrix} \mathbf{e}_t^+ \\ -\mathbf{e}_t^- \end{bmatrix} = \frac{\rho^{(1)}}{d} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{h}_t^+ \\ \mathbf{h}_t^- \end{bmatrix} + \frac{\partial_t \mu^{(1)} d}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{h}_t^+ \\ \mathbf{h}_t^- \end{bmatrix}
$$

which is equivalent to the IBCs in the classical TS model when δ ≫ *d and dual to the T-A-formulation*

Proposed approach

current density and power-law treatment

The profile of $\mathbf{h}^{(k)}$ is linear across $\Delta y^{(k)} = d/N$ and $\mathbf{j}_z^{(k)}$ *z* $=$ **n**_{*s*} \times ∂_{y} **h**^(k) = **n**_{*s*} \times $\left\{$ $\mathbf{h}_t^k - \mathbf{h}_t^{k-1}$ is constant in $\Omega^{(k)}_{{\scriptscriptstyle S}}$

The local 1-D $E-J$ power-law is

11

 $|\mathbf{n}_s \times (\mathbf{h}_t^k - \mathbf{h}_t^{k-1})|$ $j_c\Delta y^{(k)}$) *n*−1

$$
\mathbf{h}_t^N = \mathbf{h}_t^+ = -\nabla \phi^+ \mathbf{h}_s^+
$$
\n
$$
\mathbf{h}_t^1
$$
\n
$$
\mathbf{h}_t^1
$$
\n
$$
\mathbf{h}_t^1
$$
\n
$$
\mathbf{h}_t^2 = \mathbf{h}_t^- = -\nabla \phi^- \mathbf{h}_s^-
$$
\n
$$
\mathbf{h}_s^1
$$
\n
$$
\mathbf{h}_t^2 = \mathbf{h}_t^- = -\nabla \phi^- \mathbf{h}_s^-
$$

Virtual domain Ω_{s} and 1-D virtual discretization across the thickness of the thin region ̂

$$
\rho^{(k)} = \frac{e_c}{j_c} \left(\frac{\ln{}}{}
$$

The proposed TS model was implemented in **Gmsh** [Geuzaine, 2009] and solved using **GetDP** [Dular].

2-D Validation

single HTS tape (only the HTS layer is modelled using the TS model) [13,14]

x

Simulations parameters: • $e_c = 10^{-4}$ V/m • $j_c = 5 \times 10^8 \text{ A/m}^2$ • $n = 21$ • Imposed current: 0.9 I_c • $l = 4$ mm • $d = 10 \ \mu m$

Magnetic field normal component along the tape width ($N = 1$) Magnetic field tangential component across the tape thickness $\times 10^3$

2-D Validation

two closely packed tapes carrying anti-parallel currents [Grilli, 2010]

$$
\sim L = 250 \,\mu\text{m}
$$

14

2-D Validation

current density distribution in the tape

2-D Validation *AC losses computation*

Instantaneous AC loss:

$$
\mathcal{L}(t) = \sum_{k=1}^{N} \int_{\Gamma_s^k} \rho^{(k)} H^{(k)T} \mathcal{S}^{(k)} H^{(k)} d\Gamma
$$

where
$$
H^{(k)} = \begin{bmatrix} h_t^k \\ h_t^{k-1} \end{bmatrix}
$$

 h_t^{k-1}

2-D Application #1

infinitely long representation of a racetrack coil

Magnetic flux density

 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

2-D Application #2

full HTS tape: substrate + HTS + silver stabilizer

Reference TS model (N=11)

Magnetic flux density:

17

2-D Application #2

18

Projection of the current density onto the *z*-direction over time

3-D Application

Roebel cable [Zermeno,2013]

3-D Application *Roebel cable [Zermeno,2013]*

Projection of the current density across the strands thickness

3-D Application *Roebel cable [Zermeno,2013]*

Conclusions

A new finite element thin-shell (TS) model was proposed and demonstrated to compute local and global quantities in HTS simulations efficiently

Characteristics of proposed TS model:

• Closely packed tapes \Rightarrow both edge and top/bottom losses are taken into account • Tapes with **multiple layers** with different properties, e.g. **ferromagnetic substrates**, etc

- Greatly **simplifies meshing** and **reduces the number of DoFs**
- - **No spurious oscillation** such as in the T-A formulation
- Complete electromagnetic formulation in terms for **magnetic and electric fields**
	-
- Allows considering **any type of problem involving HTS tapes**, including:
	-
	-

• Couples naturally with either the H , H - ϕ or A formulations (A-formulation not shown here)

• Case $N = 1$ is equivalent to the T -A-formulation, but with better numerical stability

References

[2] L. Krahenbuhl and D. Muller, "Thin layers in electrical engineering-example of shell models in analysing eddy-currents by boundary and finite element

- [1] I. D. Mayergoyz, "On calculation of 3-D eddy currents in conducting and magneti shells," *IEEE Trans. Magn.*, vol. 31, no. 3, pp. 1319–1324, 1995.
- methods," *IEEE Trans. Magn.*, vol. 29, no. 2, pp. 1450–1455, 1993.
- [3] C. Geuzaine, P. Dular, and W. Legros, "Dual formulations for the modelling of thin electromagnetic shells using edge elements," *IEEE Trans. Magn.*, vol. 36, no. 4, pp. 799–803, 2000.
- *Supercond. Sci. Technol.*, vol. 30, no. 2, 2017.
- 3, pp. 1–7, 2010.
-
- [7] C. Geuzaine, "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities," no. May, pp. 1309–1331, 2009.
- [8] P. Dular and C. Geuzaine, "GetDP reference manual: the documentation for GetDP, a general environment for the treatment of discrete problems." [http://](http://getdp.info) [getdp.info.](http://getdp.info)
- 2013.

[4] H. Zhang, M. Zhang, and W. Yuan, "An efficient 3D finite element method model based on the T-A formulation for superconducting coated conductors," [5] F. Grilli *et al.*, "Edge and top/bottom losses in non-inductive coated conductor coils with small separation between tapes," *Supercond. Sci. Technol.*, vol. 23, no. [6] V. M. R. Zermeno, F. Grilli, and F. Sirois, "A full 3D time-dependent electromagnetic model for Roebel cables," *Supercond. Sci. Technol.*, vol. 26, no. 5, 2013.

[9] M. Pellikka, S. Suuriniemi, L. Kettunen, and C. Geuzaine, "Homology and cohomology computation in finite element modeling," vol. 35, no. 5, pp. 1195–1214,

June 22, 2021

POLYTECHNIQUE **MONTRÉAL**

UNIVERSITÉ **D'INGÉNIERIE**

Bruno Alves E-mail: bruno.alves@polymtl.ca Phone: +1 514 910-4680

Thank you!