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Introduction
In a superconductor in the critical state, the distribution of induced shielding currents is quasi-static and 
depends on the value of the applied field and its history. This hysteresis leads to the fact that in a time-
periodically variable field the current distribution and its magnetic moment depend on the peak value of 
the field but not on the rate of change of the field. The magnetization loop and its area, i.e. the losses, 
are given by the ratio of the peak value of the field and the critical current density. This suggests that by 

applying a field waveform with the same effective (rms) value but a larger crest factor 𝐵𝑝 /𝐵𝑟𝑚𝑠, it is 

possible to reduce losses. This is diametrically opposed to the flux-flow regime or normal state, where 
the losses are proportional to the rms value of the field. 
If, instead of a sinusoidal field 𝐵 𝑡 = 𝐵1 sin 2𝜋𝑓1𝑡, we apply a square wave field whose Fourier series

expansion is 𝐵(𝑡) = 𝐵1σ𝑛=1,3,…
𝑁 sin(𝑛2𝜋𝑓1𝑡)

𝑛
, its peak and rms values are 𝐵𝑝 = 𝐵𝑟𝑚𝑠 =

𝜋

4
𝐵1, where the

rms value is greater than the rms value of the sinusoidal field 𝐵𝑟𝑚𝑠 =
1

2
𝐵1. It is obvious that by adding 

suitable components of the field we can increase its effective value and at the same time reduce its peak 
value. Both the amplitudes and the relative phases of the components affect the resulting value.

Fig. 1. Real and imaginary parts of the fundamental-frequency and third-harmonic frequency complex
amplitudes of the magnetic moment, normalized to the magnetic moment of the sample with perfect 
screening, as a function of the applied field amplitude [3]. Symbols are for experimental data. Curves 
represent the amplitudes calculated on the basis of the model.

When the applied field is synthesized from harmonic components:
a) in the critical state, the nonlinear response due to hysteresis leads to mixing of harmonic components 
of the field and of the magnetic moment
b) in flux-flow or normal states, the response is linear for which the principle of superposition applies.

Experiment and model
Prove of the critical state in the sample: 2G HTS wire #SCS4050 [1].

The applied field is 𝐵 𝑡 = 𝐵1cos(2𝜋𝑓𝑡)

The magnetic moment of a sample is given 
by Fourier coefficients 𝑀𝑛,
𝑚 𝑡 = σ𝑛=0

∞ 𝑀𝑛 𝑓 exp 𝑖2𝜋𝑓𝑡 . The 
coefficient are calculated from experimental 
data [2].

The energy stored (real part of energy) and 
dissipated per applied field cycle (imaginary 
part of energy) is

Re 𝐸 𝑓 + 𝑖 Im 𝐸 𝑓 = −
𝐵1𝑀1 𝑓

2
.

Fig 2. Top: temperature dependence of the total 
dissipated power in Nb film for the square wave 
field synthesized from the first one, two, three, and 
four terms in series expansion with 𝐵1 = 100 μT [4]. 
Bottom: the total energy dissipation rate 
normalized to the energy dissipation rate in the 
pure sinusoidal field.

Fig. 3. Normalized theoretical extreme values of total 
mean stored energy and total energy dissipated per the 
fundamental field cycle, for different values of the 
relative phase of the fundamental and third harmonic 
components of the field, as a function of 𝐵𝑟𝑚𝑠/𝐵𝑑, 
where 𝐵𝑑 = 𝜇0𝑗𝑐𝑑/𝜋 is the characteristic field [3].

Conclusion
In an applied periodic field, the energy of a system with hysteresis, both the mean accumulated energy and the 
energy dissipated per the cycle of the fundamental component of the applied field, varies with the amplitudes 
and relative phases of the sinusoidal field components at harmonics of the fundamental frequency. 
Appropriate selection of components can lead to reduced losses, even if the new field has a larger effective
value than a purely sinusoidal field. This can be used in practice. Complete analytical expressions for the initial 
magnetization curve and thus for the full hysteresis loop offer an effective way to study such a system. 
In the flux-flow regime and in the normal state, the response of the system is linear and the principle of 
superposition applies here - each added component of the field increases the dissipation of energy.

The power dissipated per field cycle is
𝑃 = 𝑓𝜋𝐵1Im 𝑀1(𝑓).

Normal state 𝑃 ∝ σ𝑛=1,3,5,…
𝑁 𝑛𝑓 2𝜎

𝐵1

𝑛

2
∝

𝑁+1

2
, where 𝜎 is the conductivity

Critical state 𝑃 = σ𝑛=1,3,5,..
𝑁 𝑛𝑓𝜋𝐵1Im 𝑀1(𝑛𝑓)
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