HTS 2020 modelling

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd - 23rd June 2021, Virtual (Nancy, France)

Modeling HTS dynamo-type flux pumps: open-circuit mode and charge of an HTS coil

Asef Ghabeli ¹ , Mark Ainslie ² , Enric Pardo¹ , Loïc Quéval ³

1 Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia

2 Department of Engineering, University of Cambridge, United Kingdom

3 Group of Electrical Engineering Paris (GeePs), CentraleSupélec, University of Paris-Saclay, France

Principle of an HTS Flux Pump

What is a dynamo-type flux pump?

DC voltage is created by non-linear resistivity in HTS Tape

Accumulation of DC voltage energizes the coil in many cycles

HTS dynamo-type flux pump

Application of flux pump

Superconducting Motors and Generators

Brushless injection of DC current into rotor

Reduces maintenance and improve reliability

Avoiding current leads and its thermal load

Improve efficiency of cryogenic system

Gao et al. 2019 IEEE TAS

Application of flux pump

Superconducting Magnets

Injection of DC current without using power supply

Maintaining persistent current mode

Avoiding current leads and its thermal load

Improve efficiency of cryogenic system

General definition

$$
\mathbf{E}(\mathbf{J}) = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \varphi \longrightarrow \text{Scalar potential}
$$

 $\nabla \cdot \mathbf{J} = 0$ Current conservation equation **Always Satisfied!**

 $\nabla \cdot \mathbf{A} = 0$ Coulomb's gauge

$$
\mathbf{E}(\mathbf{J})=E_c\left(\frac{|\mathbf{J}|}{J_c}\right)^n\frac{\mathbf{J}}{|\mathbf{J}|}\quad\text{Isotropic E-J power law}
$$

MEMEP 2D method

$$
F = \int_{\Omega} d^{3} \mathbf{r} \left[\frac{1}{2} \frac{\Delta A_{J}}{\Delta t} \cdot \Delta \mathbf{J} + \frac{\Delta A_{M}}{\Delta t} \cdot \Delta \mathbf{J} + U(\mathbf{J}_{0} + \Delta \mathbf{J}) \right]
$$

\nSuperconducting or normal conducting region in 3D
\nDue to current density
\n
$$
L = \int_{V} dv \left[\frac{1}{2} \frac{\Delta A_{J}}{\Delta t} \cdot (\nabla \times \Delta \mathbf{T}) + \frac{\Delta A_{M}}{\Delta t} \cdot (\nabla \times \Delta \mathbf{T}) + \underbrace{U(\nabla \times \mathbf{T})}_{\text{Change between two time steps}} \right]
$$

\nChange between two time steps
\n
$$
\text{Isotropic E-J power law} \quad \mathbf{E}(\mathbf{J}) = E_{c} \left(\frac{|\mathbf{J}|}{J_{c}} \right)^{n} \frac{\mathbf{J}}{|\mathbf{J}|} \underbrace{\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{v}}_{\text{U}} U(\mathbf{J}) = \int_{0}^{\mathbf{J}} \mathbf{E}(\mathbf{J}') \cdot d\mathbf{J}'
$$

MEMEP 2D method

$$
F = \int_{\Omega} d^{3} \mathbf{r} \left[\frac{1}{2} \frac{\Delta A_{J}}{\Delta t} \cdot \Delta \mathbf{J} + \frac{\Delta A_{M}}{\Delta t} \cdot \Delta \mathbf{J} + U(\mathbf{J}_{0} + \Delta \mathbf{J}) \right]
$$

Superconducting tape, coil and series resistance

Assumption of superconducting tape, coil, series resistance far away from each other: $F = F_S + F_L + F_R$

Assumption of infinitely long tape and magnetic field: Coil inductance

$$
F = l \int_{S_S} d^2 \mathbf{r}_2 \left[\frac{1}{2} \Delta J \frac{\Delta A_J}{\Delta t} + \Delta J \frac{\Delta A_M}{\Delta t} + U(J) \right] + \frac{1}{2} L \frac{(\Delta I)^2}{\Delta t} + \frac{1}{2} R I^2
$$
Resistance
Superconducting tape
ldeal coil Series resistance

Segregated *H***-formulation method**

*H***-formulation: Independent variables are the components of the magnetic field strength** *H*

Magnetostatic magnet model + Time-dependent *H***-formulation HTS tape model**

Unidirectional coupling between magnet and HTS models using electromagnetic boundary conditions and a rotation operator

Magnetostatic magnet model **Time-dependent** *H***-formulation HTS wire model**

Configuration of 2D model: Coil charging case

Tape and magnet are defined infinitely long in z direction

J^c assumed constant for simplicity

Magnet width (*w***) = 6 mm Magnet height (***h***) = 12 mm Effective depth (***l***) = 12.7 m Remanent flux density (B^r) = 1.25 T**

Tape width (b) = 12 mm Tape thickness (a) = 1 µm Critical current I_c **= 283 A n-value = 20**

 $R_{\text{rotor}} = 35$ mm

Configuration of 2D model: Coil charging case

Assumptions

Ideal HTS coil Lumped parameter elements

Flux pump can be modeled as a DC voltage source in series with an effective resistance

The coil can be treated as an independent LR circuit charged by the voltage source

$$
i(t) = I_{sat} \left[1 - e^{-t/\tau} \right]
$$

 $I_{sat} = V_{oc}/(R_c + R_{\text{eff}})$

 $\tau = L/(R_c + R_{\text{eff}})$

Calculation methods: Coil charging case

Two different numerical methods + Analytical method to cross-check the validity of the results

1. MEMEP 2D method

2. Segregated H-formulation Finite Element Method

3. Analytical Method

$$
i(t) = I_{sat} \left[1 - e^{-t/\tau} \right]
$$

I-V curve of the flux pump

Slope of I-V curve shows effective resistance R_{eff}

R_{eff} is constant for each frequency in **superconducting regime**

Reff increases directly proportional to frequency

Excellent agreement between methods!

Instantaneous voltage components

$$
E_{av}(t) = \frac{1}{S} \int_{S_S} d^2 \mathbf{r}_2 \,\rho[J(\mathbf{r}_2)]J(\mathbf{r}_2)
$$

$$
l \cdot [E_{av}(J) + \partial_t A_{J,av}]
$$

$$
V(t) = l \cdot [E_{av}(J) + \partial_t A_{M,av} + \partial_t A_{J,av}]
$$

Very good agreement between methods!

Dynamic charging of the coil

f = 25 Hz

Ripples resemble the ripples of the cumulative total output voltage V_{cumul}

$$
V_{cumul}(t) = \int_0^t V(t') dt'
$$

Excellent agreement between methods!

Extracted data points at the end of each cycle

for a given frequency

Agrees with measurements presented in *Hamilton et al. IEEE Trans. Appl. Supercond. 2020*

Ripple AC loss

Current density and electric field distributions are mostly similar

AC loss remains largely the same!

Coil charging behavior

For a given frequency, coil current saturates faster and at a higher value as the airgap decreases.

For a given airgap, the coil current saturates faster with a higher value of I_{sat} as the frequency increases.

Very good agreement between numerical and analytical methods!

Time [s]

Summary

- **Two novel numerical methods for modeling the charging process of a coil by an HTS dynamo were presented**
- Nine different cases including various airgaps and frequencies over thousands of **cycles were compared**
- **Current charging curve contains ripples within each cycle, which cannot be captured via the analytical method**
- **Current ripples cause ripple AC loss in the HTS dynamo**
- The ripple AC loss is almost constant during the whole charging process
- **The two numerical methods and the analytical method showed excellent quantitative and qualitative agreement**
- **The numerical modeling frameworks presented here have the potential to be coupled with other multiphysics analyses as well as with a model of an HTS coil**

For more details regarding this work:

Ghabeli et al 2021 *Supercond. Sci. Technol.* <https://doi.org/10.1088/1361-6668/ac0ccb>

Ghabeli, Asef, et al. "Modeling the charging process of a coil by an HTS dynamo-type flux pump." arXiv preprint arXiv:2105.00510 (2021).